scholarly journals Human HLA-A0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the V beta 17 gene segment.

1995 ◽  
Vol 181 (1) ◽  
pp. 79-91 ◽  
Author(s):  
P J Lehner ◽  
E C Wang ◽  
P A Moss ◽  
S Williams ◽  
K Platt ◽  
...  

The major histocompatibility complex class I-restricted cytotoxic T lymphocyte (CTL) response is important in the clearance of viral infections in humans. After influenza A infection, a peptide from the matrix protein, M58-66, is presented in the context of the MHC allele HLA-A0201 and the resulting CTL response is detectable in most HLA-A0201 subjects. An initial study suggested that M58-66-specific CTL clones show conserved T cell receptor (TCR) alpha and beta gene segments. We have addressed the significance of this observation by determining the expression of V beta 17 during the development of M58-66-specific CTL lines in 21 unrelated HLA-A0201 subjects, and analyzing TCR usage by M58-66-specific CTL clones. TCR V beta 17 was the dominant V beta segment used and CD8 V beta 17 expansion correlated with M58-66-specific lysis. Limiting dilution analysis from five subjects showed the M58-66 CTL precursor frequency to vary between 1/54,000 and less than 1/250,000, and that up to 85% of the matrix peptide (M58-66)-specific CTL used the V beta 17 gene segment. The M58-66 specific CTL response was dependent on previous viral exposure and specific V beta 17 expansion, as it was not found in cord blood, despite a readily expandable V beta 17+ CD8+ T cell subpopulation. Sequence analysis of 38 M58-66-specific V beta 17 transcripts from 13 subjects revealed extensive conservation in the CDR3 region including conservation of an arginine-serine motif. To test the dependence of this CTL response on the V beta 17 gene segment, peripheral blood lymphocytes were depleted of CD8+ TCR V beta 17+ cells, before the generation of M58-66-specific CTL. In most cases such depletion blocked or severely reduced the generation of the M58-66-specific response, and under limiting dilution conditions could abolish M58-66-specific CTL precursors. These studies reveal the dependence of this natural human immune response on a particular TCR gene segment.

2007 ◽  
Vol 88 (2) ◽  
pp. 530-535 ◽  
Author(s):  
E. G. M. Berkhoff ◽  
M. M. Geelhoed-Mieras ◽  
R. A. M. Fouchier ◽  
A. D. M. E. Osterhaus ◽  
G. F. Rimmelzwaan

The influenza A virus nucleoprotein (NP) and matrix protein are major targets for human virus-specific cytotoxic T-lymphocyte (CTL) responses. Most of the CTL epitopes that have been identified so far are conserved. However, sequence variation in CTL epitopes of the NP has recently been demonstrated to be associated with escape from virus-specific CTLs. To assess the extent of variation in CTL epitopes during influenza A virus evolution, 304 CTL clones derived from six study subjects were obtained with specificity for an influenza A/H3N2 virus isolated in 1981. Subsequently, the frequency of the CTL clones that failed to recognize a more recent influenza virus strain isolated in 2003 was determined. In four of six study subjects, CTLs were found to be specific for variable epitopes, accounting for 2.6 % of all CTL clones. For some of these CTL clones, the minimal epitope and the residues responsible for abrogation of T-cell recognition were identified.


1998 ◽  
Vol 188 (4) ◽  
pp. 773-778 ◽  
Author(s):  
Philip Wood ◽  
Tim Elliott

We and others have shown that influenza A nucleoprotein (NP) targeted to the secretory pathway cannot be processed to yield several cytotoxic T lymphocyte (CTL) epitopes in cell lines that lack the transporter associated with antigen processing (TAP). However, a large COOH-terminal fragment of NP is processed and presented in these cells. Full-length NP is cotranslationally glycosylated in the lumen of the endoplasmic reticulum at two sites distal to the major H2-Kk and H2-Db restricted CTL epitopes, and we show here that pharmacological or genetic inhibition of N-linked glycosylation, leads to the processing and presentation of both these epitopes in a TAP-independent way.


1994 ◽  
Vol 180 (5) ◽  
pp. 1901-1910 ◽  
Author(s):  
M G von Herrath ◽  
J Dockter ◽  
M Nerenberg ◽  
J E Gairin ◽  
M B Oldstone

Upon primary challenge with lymphocytic choriomeningitis virus (LCMV), H-2d (BALB/cByJ) mice mount a cytotoxic T lymphocyte (CTL) response to a single immunodominant domain of the viral nucleoprotein (NP) but no detectable response to the viral glycoprotein (GP). To manipulate this CTL response, the viral NP gene was expressed in the thymus and peripheral T lymphocytes using the murine Thy1.2 promoter. As a result, such Thy1.2-NP (H-2d) transgenic (tg) mice deleted their high-affinity anti-LCMV-NP CTL, but generated equal numbers of lower-affinity NP CTL. Further, they made an alternative anti-LCMV-GP CTL response that is not normally found in non-tg mice indicating a hierarchial control of the CTL response. Unlike the H-2d mice, H-2b (C57Bl/6J) mice normally mount a CTL response to both LCMV-GP and -NP. When the LCMV-NP was expressed using the Thy1.2 promoter in these H-2b mice, the LCMV-NP-specific CTL response was completely aborted and no CTL to new, alternative viral epitopes were generated. Dilutions of H-2b or H-2d NP peptides indicated that 3-4 logs less H-2b NP peptide was required to sensitize syngeneic target cells for CTL-specific lysis, suggesting that the differing affinities of H-2b and H-2d major histocompatibility complex molecules for their peptides likely account for the total removal of NP CTL in the H-2b mice but only partial removal in H-2d mice made to express thymic NP. Thymic grafting experiments done with thymi from newborn Thy1.2-NP tg mice show that selection processes studied in this model are of central (thymic) origin and are not caused by Thy1.2-positive LCMV-NP-expressing T lymphocytes in the periphery.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2457-2457
Author(s):  
Yoshiyuki Takahashi ◽  
Itzel Bustos ◽  
Yoshiki Akatsuka ◽  
Hideki Muramatsu ◽  
Nobuhiro Nishio ◽  
...  

Abstract Abstract 2457 Poster Board II-434 Introduction: Down-regulation or loss of human leukocyte antigen (HLA) expression can lead to impaired T-cell recognition and a blunted immune response to malignant tumors. We investigated HLA expression on leukemic cells derived from patients at the time of diagnosis and relapse after HLA haploidentical hematopoietic stem cell transplantation (HSCT) using flow cytometry with locus-specific antibodies. We hypothesized that the loss of HLA haplotype caused leukemic cells to escape immunosurveillance and consequently led to relapse of the disease. Materials and methods: The CD13+/34+ leukemic blasts were sorted by flow cytometry from bone marrow cells at the time of diagnosis and at the time of relapse. Genomic DNA was extracted from leukemic cells by fluorescence-activated cell-sorter as well as phytohemagglutinin-stimulated patient-derived T cells and subjected to single-nucleotide polymorphism (SNP) array analysis using GeneChip NspI arrays (Affymetrix, Tokyo, Japan). Allele-specific copy number was detected using Copy Number Analyser for GeneChip® software. The frequencies of cytotoxic T lymphocyte precursor (CTLp) specific for the recipient mismatched HLA molecules were analyzed using a standard limiting dilution assay. Allo-HLA-restricted CTL clones were isolated by standard limiting dilution and expanded for cytotoxicity assay against mismatched HLA transduced HLA class I-deficient 721.221 B-LCLs. Results: Two of three relapsed patients after HLA haploidentical HSCT demonstrated loss of HLA alleles on leukemic cells at the time of relapse and this loss was limited to the mismatched alleles in both patients. However, none of seven relapsed patients experienced haplotype loss following HLA matched HSCT. SNP array analyses of sorted leukemic cells at the time of diagnosis and at the time of relapse further revealed the copy number-neutral loss of heterozygosity, namely acquired uniparental disomy (UPD) on the short arm of chromosome 6, resulting in the total loss of the mismatched HLA haplotype. Recipient alloantigen-specific cytotoxic T-cell clones were generated from the donor that did not recognize the leukemic cells at the time of relapse, whereas those cells taken at diagnosis were recognized and efficiently killed. In one of the patients, we sought to determine if the number of CTLp had changed during the post-transplant course. A limiting dilution analysis with a split-well 51Cr-release assay was carried out to compare the CTLp frequencies specific for the mismatched antigens between the recipient and donor. Surprisingly, the CTLp frequencies reactive with recipient T cell blasts in CD8+ T cells obtained around Days 100, 180, and 300 (4 months before relapse) were undetectable, while the CTLp frequency obtained at Day 520 (1 month after the third DLI or 2 weeks after remission confirmed by bone marrow aspirate) was 8.6 × 10-5 [95% confidence interval (CI), 1.49 × 10-6 – 5.0 × 10-5]. The CTLp frequency in the donor CD8+ cells was 4.3 × 10-5 (95%CI, 7.2 × 10-5 – 2.5 × 10-5), which was close to that obtained after DLI in the recipient. Conclusions: These results suggest that the cytotoxic T lymphocyte response to mismatched HLA alleles can eradicate leukemic cells; however, escape from immunosurveillance by the loss of mismatched HLA alleles using UPD may be involved in relapse after haploidentical HSCT. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 78 (16) ◽  
pp. 8946-8949 ◽  
Author(s):  
G. F. Rimmelzwaan ◽  
E. G. M. Berkhoff ◽  
N. J. Nieuwkoop ◽  
R. A. M. Fouchier ◽  
A. D. M. E. Osterhaus

ABSTRACT Influenza A viruses accumulate amino acid substitutions in cytotoxic-T-lymphocyte (CTL) epitopes, allowing these viruses to escape from CTL immunity. The arginine-to-glycine substitution at position 384 of the viral nucleoprotein is associated with escape from CTLs. Introduction of the R384G substitution in the nucleoprotein gene segment of influenza virus A/Hong Kong/2/68 by site-directed mutagenesis was detrimental to viral fitness. Introduction of one of the comutations associated with R384G, E375G, partially restored viral fitness and nucleoprotein functionality. We hypothesized that influenza A viruses need to overcome functional constraints to accumulate mutations in CTL epitopes and escape from CTLs.


1983 ◽  
Vol 158 (5) ◽  
pp. 1537-1546 ◽  
Author(s):  
L P De Waal ◽  
R W Melvold ◽  
C J Melief

The cytotoxic T-lymphocyte (CTL) response against the male-specific antigen H-Y in C57BL/6 (B6, H-2b) mice is regulated by the I-Ab and Db molecules. From previous studies, we concluded that the bm12 I-Ab mutant does not respond to H-Y, because of a deletion in its T-helper-cell repertoire. We now demonstrate that two Db mutants, bm13 and bm14, also fail to generate a CTL response to H-Y. The bm12 class-II mutant on one hand and the bm13 and bm14 class-I mutants on the other complemented each other for the H-Y-specific CTL response in (bm12 X bm13)F1 and (bm 12 X bm 14)F1 hybrids. This indicates that the need for tolerance of the mutant class II and class I molecules in these hybrids does not create deletions in the I-Ab-restricted T helper cell and Db-restricted CTL repertoire for H-Y. This study constitutes the first demonstration with H-2 mutants that a CTL response controlled by class I and class II MHC molecules is complemented in an F1 cross between a class I and a class II nonresponder. (B6 X bm 13)F1 and (B6 X bm 14)F1 hybrids only responded to H-Y when the antigen was presented on F1 or B6 antigen-presenting cells (apc) but not on Db mutant apc. B6 or Db mutant responders rendered neonatally tolerant of each other failed to respond to the H-Y antigen presented on the tolerogenic allogeneic cell. In the tolerized animals, a response was only seen with responder (B6) type T cells and responder type (B6) apc, indicating that both the T cell source and the MHC type of the apc have to be taken into account in this system. Thus, Ir genes may act at the level of both the T cell repertoire and antigen presentation.


2000 ◽  
Vol 74 (13) ◽  
pp. 5769-5775 ◽  
Author(s):  
C. Sedlik ◽  
G. Dadaglio ◽  
M. F. Saron ◽  
E. Deriaud ◽  
M. Rojas ◽  
...  

ABSTRACT Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8+ cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8+ class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8+ T-cell epitopes, bound to 1-μm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503–7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4+T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies.


Sign in / Sign up

Export Citation Format

Share Document