scholarly journals Requirements for CD1d Recognition by Human Invariant Vα24+ CD4−CD8− T Cells

1997 ◽  
Vol 186 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Mark Exley ◽  
Jorge Garcia ◽  
Steven P. Balk ◽  
Steven Porcelli

A subset of human CD4−CD8− T cells that expresses an invariant Vα24-JαQ T cell receptor (TCR)-α chain, paired predominantly with Vβ11, has been identified. A series of these Vα24 Vβ11 clones were shown to have TCR-β CDR3 diversity and express the natural killer (NK) locus–encoded C-type lectins NKR-P1A, CD94, and CD69. However, in contrast to NK cells, they did not express killer inhibitory receptors, CD16, CD56, or CD57. All invariant Vα24+ clones recognized the MHC class I–like CD16 molecule and discriminated between CD1d and other closely related human CD1 proteins, indicating that recognition was TCR-mediated. Recognition was not dependent upon an endosomal targeting motif in the cytoplasmic tail of CD1d. Upon activation by anti-CD3 or CD1d, the clones produced both Th1 and Th2 cytokines. These results demonstrate that human invariant Vα24+ CD4−CD8− T cells, and presumably the homologous murine NK1+ T cell population, are CD1d reactive and functionally distinct from NK cells. The conservation of this cell population and of the CD1d ligand across species indicates an important immunological function.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3364-3364
Author(s):  
Falk Heidenreich ◽  
Elke Ruecker-Braun ◽  
Juliane S. Stickel ◽  
Anne Eugster ◽  
Denise Kühn ◽  
...  

Abstract Background Immunotherapy for CLL with new antibodies or T-cells with modified TCR relies on attractive targets. ROR1 is such a promising target since it is highly overexpressed in CLL. Chimeric antigen receptor engineered T cells and antibodies directed against the extracellular part of ROR1 have already been developed and tested in vitro or in animal models, but still there is no MHC-class I presented peptide serving as target structure for CD8+ T cells (with or without a genetically modified T cell receptor) available. Aim The aim of this study was (1) to identify an immunogenic MHC-class I presented ROR1 peptide, (2) to generate respective ROR1 peptide specific CD8+ T cell clones, and (3) to analyze the nucleotide sequence of the CDR3 region of the expressed alpha and beta T cell receptor chain. Results In mass spectrometric-based analyses of the HLA-ligandome a HLA-B*07 presented ROR1 peptide was identified in primary CLL cells of two patients. Six T cell clones specific for this particular ROR1-peptide were generated from single CD8+ T cells from 2 healthy individuals with 3 T cell clones generated from each donor. Functionality and specificity of those T cell clones were tested in cytotoxicity assays. All 6 dextramer+ CD8+ T cell clones lysed peptide loaded and HLA-B*07+ transduced K562 cells (kindly provided by Lorenz Jahn, [Jahn et al., Blood, 2015 Feb 5;125(6):949-58]). Two selected clones (XD8 and XB6) were tested for their cytotoxic potential against 2 ROR1+ HLA-B*07+ tumor cell lines (with the ROR1 peptide identified by mass spectrometry for both of them) and against 2 primary CLL cell samples. Tested clones showed a significant lysis of the respective target cells. CDR3 regions of the alpha and beta T cell receptor chain were sequenced on a single cell level. The CDR3 alpha region from each of the 3 ROR1 specific T cell clones from donor A showed some similarities to T cell clones derived from donor B (Table 1). Conclusion For the first time a MHC-class I presented ROR1 peptide antigen is reported. ROR1 positive CLL cells can be targeted by specific HLA-B*07 restricted CTLs. Respective CD8+ T cell clones with anti-leukemic activity from 2 donors share some amino acid motifs of the CDR3 alpha and beta regions. In conclusion, this information provides the possibility of generating ROR1 specific CD8+ T cells with genetically modified T cell receptors for immunotherapy and for tracking those cells after administration with next generation sequencing in peripheral blood samples of patients. Furthermore, data suggest the existence of public TCR motifs in leukemia antigen specific CTLs, which needs to be proven in follow-up experiments with larger cohorts of donors and patients. Finally, the presented strategy to identify leukemia specific peptide antigens for CD8+ T cells might be an attractive method for similar projects. Table 1 Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Table 1. Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Disclosures Middeke: Sanofi: Honoraria. Schetelig:Sanofi: Honoraria.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 20016-20016
Author(s):  
E. G. Iliopoulou ◽  
M. V. Karamouzis ◽  
S. A. Perez ◽  
A. Ardavanis ◽  
C. N. Baxevanis ◽  
...  

20016 Background: CD161 is a glycoprotein expressed in >90% of NK and 25% of T cells in the peripheral blood of healthy individuals. Several NK receptors on T cells infiltrating tumors have been proven to negatively influence their effector function and therefore play a role in tumor escape. In this study, we investigated T cells expressing CD161 in the peripheral blood mononuclear cells (PBMC), tumor infiltrarting lymphocytes (TIL) or malignant effusions (ME) from patients with several types of cancer. Methods: Expression of CD161 in CD4+ or CD8+ (lacking CD56) T cells, was examined using four-colour flow cytometry. The proliferative capacity and potential cytokine production of purified CD4+CD161+CD56− cells, were studied after weak or strong stimulation, with or without costimulation, in the presence or absence of Interleukin-2 (IL-2). The possible regulatory function of activated CD4+CD161+CD56− cells on T cell allo-responses was also investigated. Results: CD4+CD161+CD56− T cells were significantly increased (P < 0.01) in TIL, either from tumor tissue (n = 8) or metastatic lymph nodes (n = 5), and ME (n = 25), compared to PBMC from both cancer patients (n = 36) and healthy individuals (n = 12). CD4+CD161+CD56− cells from all sources tested, have the same phenotypic characteristics: they comprise a memory T cell population (CD45RO+CD45RA−) expressing high CD28 and CD95 and low CD25, CD38 and HLA-DR. Co-stimulation via CD28 is important for induction of proliferation and production of large amounts of Th1 and Th2 cytokines (IFN-γ, TNF-a, GM-CSF, IL-4 and IL-10). Following co-stimulation, CD4+CD161+CD56− cells also exert a suppressive activity on autologous PBMC allo-responses. The latter effect does not require cell-to-cell contact and is mediated by soluble factors, including IL10, since neutralization of IL10 partially restored the immune response. Conclusions: CD4+CD161+CD56− cells represent a distinct memory T cell population that is significantly increased in TIL and ME in patients with cancer. These cells are capable of secreting large amounts of both Th1 and Th2 cytokines and might play an immunosuppressive role, mainly through IL-10 production, depending on the microenvironment in which they develop. No significant financial relationships to disclose.


2019 ◽  
Author(s):  
Daria L. Ivanova ◽  
Ryan Krempels ◽  
Stephen L. Denton ◽  
Kevin D. Fettel ◽  
Giandor M. Saltz ◽  
...  

AbstractNK cells regulate CD4+ and CD8+ T cells in acute viral infection, vaccination and the tumor microenvironment. NK cells also become exhausted in chronic activation settings. The mechanisms causing these ILC responses and their impact on adaptive immunity are unclear. CD8+ T cell exhaustion develops during chronic Toxoplasma gondii (T. gondii) infection resulting in parasite reactivation and death. How chronic T. gondii infection impacts the NK cell compartment is not known. We demonstrate that NK cells do not exhibit hallmarks of exhaustion. Their numbers are stable and they do not express high PD1 or LAG3. NK cell depletion with anti-NK1.1 is therapeutic and rescues chronic T. gondii infected mice from CD8+ T cell exhaustion dependent death, increases survival after lethal secondary challenge and reduces parasite reactivation. Anti-NK1.1 treatment increased polyfunctional CD8+ T cell responses in spleen and brain and reduced CD8+ T cell apoptosis. Chronic T. gondii infection promotes the development of a modified NK cell compartment, which does not exhibit normal NK cell behavior. This splenic CD49a-CD49b+NKp46+ NK cell population develops during the early chronic phase of infection and increases through the late chronic phase of infection. They are Ly49 and TRAIL negative and are enriched for expression of CD94/NKG2A and KLRG1. They do not produce IFNγ, are IL-10 negative, do not increase PDL1 expression, but do increase CD107a on their surface. They are also absent from brain. Based on the NK cell receptor phenotype we observed NKp46 and CD94-NKG2A cognate ligands were measured. Activating NKp46 (NCR1-ligand) ligand increased and NKG2A ligand Qa-1b expression was reduced. Blockade of NKp46 also rescued the chronically infected mice from death. Immunization with a single dose non-persistent 100% protective T. gondii vaccination did not induce this cell population in the spleen, suggesting persistent infection is essential for their development. We hypothesize chronic T. gondii infection induces an NKp46 dependent modified NK cell population that reduces functional CD8+ T cells to promote persistent parasite infection in the brain. NK cell targeted therapies could enhance immunity in people with chronic infections, chronic inflammation and cancer.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5133-5141 ◽  
Author(s):  
Michael D. Stadnisky ◽  
Xuefang Xie ◽  
Ebony R. Coats ◽  
Timothy N. Bullock ◽  
Michael G. Brown

AbstractMHC class I (MHC I) is essential to NK- and T-cell effector and surveillance functions. However, it is unknown whether MHC I polymorphism influences adaptive immunity through NK cells. Previously, we found that MHC I Dk, a cognate ligand for the Ly49G2 inhibitory receptor, was essential to NK control of murine (M)CMV infection. Here we assessed the significance of NK inhibitory receptor recognition of MCMV on CD8 T cells in genetically defined MHC I Dk disparate mice. We observed that Dk-licensed Ly49G2+ NK cells stabilized and then enhanced conventional dendritic cells (cDCs) recovery after infection. Furthermore, licensed NK support of cDC recovery was essential to enhance the tempo, magnitude, and effector activity of virus-specific CD8 T cells. Minimal cDC and CD8 T-cell number differences after low-dose MCMV in Dk disparate animals further implied that licensed NK recognition of MCMV imparted qualitative cDC changes to enhance CD8 T-cell priming.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2008 ◽  
Vol 14 (12) ◽  
pp. 1390-1395 ◽  
Author(s):  
Angel Varela-Rohena ◽  
Peter E Molloy ◽  
Steven M Dunn ◽  
Yi Li ◽  
Megan M Suhoski ◽  
...  

Author(s):  
Christian R Schultze-Florey ◽  
Leonie Kuhlmann ◽  
Solaiman Raha ◽  
Joana Barros-Martins ◽  
Ivan Odak ◽  
...  

Donor lymphocyte infusion (DLI) is a standard of care for relapse of AML after allogeneic hematopoietic stem cell transplantation (aHSCT). Currently it is poorly understood how and when CD8+ αβ T cells exert graft-versus-leukemia (GvL) activity after DLI. Also, there is no reliable biomarker to monitor GvL activity of the infused CD8+ T cells. Therefore, we analyzed the dynamics of CD8+ αβ T cell clones in DLI-patients. In this prospective clinical study of 29 patients, we performed deep T cell receptor β (TRB) sequencing of sorted CD8+ αβ T cells to track patients' repertoire changes in response to DLI. Upon first occurrence of GvL, longitudinal analyses revealed a preferential expansion of distinct CD8+ TRB clones (n=14). This did not occur in samples of patients without signs of GvL (n=11). Importantly, early repertoire changes 15 days after DLI predicted durable remission for the 36 months study follow-up. Furthermore, absence of clonal outgrowth of the CD8+ TRB repertoire after DLI was an early biomarker that predicted relapse at a median time of 11.2 months ahead of actual diagnosis. Additionally, unbiased sample analysis regardless of the clinical outcome revealed that patients with decreasing CD8+ TRB diversity at day 15 after DLI (n=13) had a lower relapse incidence (P=0.0040) compared to patients without clonal expansion (n=6). In conclusion, CD8+ TRB analysis may provide a reliable tool for predicting the efficacy of DLI and holds the potential to identify patients at risk for progression and relapse after DLI.


Sign in / Sign up

Export Citation Format

Share Document