scholarly journals Epstein-Barr Virus–induced Molecule 1 Ligand Chemokine Is Expressed by Dendritic Cells in Lymphoid Tissues and Strongly Attracts Naive T Cells and Activated B Cells

1998 ◽  
Vol 188 (1) ◽  
pp. 181-191 ◽  
Author(s):  
Vu N. Ngo ◽  
H. Lucy Tang ◽  
Jason G. Cyster

Movement of T and B lymphocytes through secondary lymphoid tissues is likely to involve multiple cues that help the cells navigate to appropriate compartments. Epstein-Barr virus– induced molecule 1 (EBI-1) ligand chemokine (ELC/MIP3β) is expressed constitutively within lymphoid tissues and may act as such a guidance cue. Here, we have isolated mouse ELC and characterized its expression pattern and chemotactic properties. ELC is expressed constitutively in dendritic cells within the T cell zone of secondary lymphoid tissues. Recombinant ELC was strongly chemotactic for naive (L-selectinhi) CD4 T cells and for CD8 T cells and weakly attractive for resting B cells and memory (L-selectinlo) CD4 T cells. After activation through the B cell receptor, the chemotactic response of B cells was enhanced. Like its human counterpart, murine ELC stimulated cells transfected with EBI-1/CC chemokine receptor 7 (CCR7). Our findings suggest a central role for ELC in promoting encounters between recirculating T cells and dendritic cells and in the migration of activated B cells into the T zone of secondary lymphoid tissues.

2003 ◽  
Vol 198 (11) ◽  
pp. 1653-1663 ◽  
Author(s):  
Kara Bickham ◽  
Kiera Goodman ◽  
Casper Paludan ◽  
Sarah Nikiforow ◽  
Ming Li Tsang ◽  
...  

The initiation of cell-mediated immunity to Epstein-Barr virus (EBV) has been analyzed with cells from EBV-seronegative blood donors in culture. The addition of dendritic cells (DCs) is essential to prime naive T cells that recognize EBV-latent antigens in enzyme-linked immunospot assays for interferon γ secretion and eradicate transformed B cells in regression assays. In contrast, DCs are not required to control the outgrowth of EBV-transformed B lymphocytes from seropositive donors. Enriched CD4+ and CD8+ T cells mediate regression of EBV-transformed cells in seronegative and seropositive donors, but the kinetics of T-dependent regression occurs with much greater speed with seropositives. EBV infection of DCs cannot be detected by reverse transcription–polymerase chain reaction with primers specific for mRNA for the EBNA1 U and K exons. Instead, DCs capture B cell debris and generate T cells specific for EBV latency antigens. We suggest that the cross-presentation of EBV-latent antigens from infected B cells by DCs is required for the initiation of EBV-specific immune control in vivo and that future EBV vaccine strategies should target viral antigens to DCs.


2000 ◽  
Vol 191 (10) ◽  
pp. 1649-1660 ◽  
Author(s):  
Christian Münz ◽  
Kara L. Bickham ◽  
Marion Subklewe ◽  
Ming L. Tsang ◽  
Ann Chahroudi ◽  
...  

The Epstein-Barr virus (EBV)-encoded nuclear antigen EBNA1 is critical for the persistence of the viral episome in replicating EBV-transformed human B cells. Therefore, all EBV-induced tumors express this foreign antigen. However, EBNA1 is invisible to CD8+ cytotoxic T lymphocytes because its Gly/Ala repeat domain prevents proteasome-dependent processing for presentation on major histocompatibility complex (MHC) class I. We now describe that CD4+ T cells from healthy adults are primed to EBNA1. In fact, among latent EBV antigens that stimulate CD4+ T cells, EBNA1 is preferentially recognized. We present evidence that the CD4+ response may provide a protective role, including interferon γ secretion and direct cytolysis after encounter of transformed B lymphocyte cell lines (B-LCLs). Dendritic cells (DCs) process EBNA1 from purified protein and from MHC class II–mismatched, EBNA1-expressing cells including B-LCLs. In contrast, B-LCLs and Burkitt's lymphoma lines likely present EBNA1 after endogenous processing, as their capacity to cross-present from exogenous sources is weak or undetectable. By limiting dilution, there is a tight correlation between the capacity of CD4+ T cell lines to recognize autologous B-LCL–expressing EBNA1 and DCs that have captured EBNA1. Therefore, CD4+ T cells can respond to the EBNA1 protein that is crucial for EBV persistence. We suggest that this immune response is initiated in vivo by DCs that present EBV-infected B cells, and that EBNA1-specific CD4+ T cell immunity be enhanced to prevent and treat EBV-associated malignancies.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3439-3447 ◽  
Author(s):  
Jerome E. Tanner ◽  
Caroline Alfieri

Epstein-Barr virus (EBV) acute infectious mononucleosis (AIM) is characterized by transient immunosuppression in vivo and increased T-cell apoptosis after ex vivo culture of AIM peripheral blood mononuclear cells. We undertook experiments to test whether EBV or purified virion envelope glycoprotein gp350 could contribute to Fas-mediated T-cell apoptosis. Our in vitro results indicate that EBV increased Fas expression in CD4+ T cells and Fas ligand (FasL) expression in B cells and macrophages. Purified gp350 was also shown to significantly increase CD95 expression in CD4+ T cells. When T-cell CD95 was cross-linked, EBV-stimulated T cells underwent apoptosis. The induction of T-cell CD95 by EBV followed by CD95 cross-linking with anti-CD95 monoclonal antibody resulted in a loss in the number of T cells responding to the T-cell mitogens, anti-CD3 antibody, and interleukin-2. These results indicate that, in addition to serving as a principal ligand for the attachment of virus to target cells, gp350 may also act as an immunomodulatory molecule that promotes T-cell apoptosis.


Blood ◽  
2013 ◽  
Vol 121 (9) ◽  
pp. 1584-1594 ◽  
Author(s):  
Carol S. Leung ◽  
Michael A. Maurer ◽  
Sonja Meixlsperger ◽  
Anne Lippmann ◽  
Cheolho Cheong ◽  
...  

Key Points B cells contribute to MHC presentation of DEC-205–targeted antigen. Activated B cells present DEC-205–targeted antigen efficiently, because they retain it longer.


2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


2020 ◽  
Vol 117 (42) ◽  
pp. 26318-26327
Author(s):  
Kamonwan Fish ◽  
Federico Comoglio ◽  
Arthur L. Shaffer ◽  
Yanlong Ji ◽  
Kuan-Ting Pan ◽  
...  

Epstein–Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.


2005 ◽  
Vol 79 (12) ◽  
pp. 7355-7362 ◽  
Author(s):  
Michelle A. Swanson-Mungerson ◽  
Robert G. Caldwell ◽  
Rebecca Bultema ◽  
Richard Longnecker

ABSTRACT A significant percentage of the population latently harbors Epstein-Barr virus (EBV) in B cells. One EBV-encoded protein, latent membrane protein 2A (LMP2A), is expressed in tissue culture models of EBV latent infection, in human infections, and in many of the EBV-associated proliferative disorders. LMP2A constitutively activates proteins involved in the B-cell receptor (BCR) signal transduction cascade and inhibits the antigen-induced activation of these proteins. In the present study, we investigated whether LMP2A alters B-cell receptor signaling in primary B cells in vivo and in vitro. LMP2A does not inhibit antigen-induced tolerance in response to strong stimuli in an in vivo tolerance model in which B cells are reactive to self-antigen. In contrast, LMP2A bypasses anergy induction in response to low levels of soluble hen egg lysozyme (HEL) both in vivo and in vitro as determined by the ability of LMP2A-expressing HEL-specific B cells to proliferate and induce NF-κB nuclear translocation after exposure to low levels of antigen. Furthermore, LMP2A induces NF-κB nuclear translocation independent of BCR cross-linking. Since NF-κB is required to bypass tolerance induction, this LMP2A-dependent NF-κB activation may complete the tolerogenic signal induced by low levels of soluble HEL. Overall, the findings suggest that LMP2A may not inhibit BCR-induced signals under all conditions as previously suggested by studies with EBV immortalized B cells.


2005 ◽  
Vol 66 (9) ◽  
pp. 938-949 ◽  
Author(s):  
Marion Subklewe ◽  
Kathrin Sebelin ◽  
Andrea Block ◽  
Antje Meier ◽  
Anna Roukens ◽  
...  

Immunology ◽  
2013 ◽  
Vol 139 (4) ◽  
pp. 533-544 ◽  
Author(s):  
Sandra A. Calarota ◽  
Antonella Chiesa ◽  
Paola Zelini ◽  
Giuditta Comolli ◽  
Lorenzo Minoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document