scholarly journals A Human Immunoglobulin λ Locus Is Similarly Well Expressed in Mice and Humans

1999 ◽  
Vol 189 (10) ◽  
pp. 1611-1620 ◽  
Author(s):  
Andrei V. Popov ◽  
Xiangang Zou ◽  
Jian Xian ◽  
Ian C. Nicholson ◽  
Marianne Brüggemann

Transgenic mice carrying a 380-kb region of the human immunoglobulin (Ig) λ light (L) chain locus in germline configuration were created. The introduced translocus on a yeast artificial chromosome (YAC) accommodates the most proximal Igλ variable region (V) gene cluster, including 15 Vλ genes that contribute to >60% of λ L chains in humans, all Jλ-Cλ segments, and the 3′ enhancer. HuIgλYAC mice were bred with animals in which mouse Igκ production was silenced by gene targeting. In the κ−/− background, human Igλ was expressed by ∼84% of splenic B cells. A striking result was that human Igλ was also produced at high levels in mice with normal κ locus. Analysis of bone marrow cells showed that human Igλ and mouse Igκ were expressed at similar levels throughout B cell development, suggesting that the Igλ translocus and the endogenous κ locus rearrange independently and with equal efficiency at the same developmental stage. This is further supported by the finding that in hybridomas expressing human Igλ the endogenous L chain loci were in germline configuration. The presence of somatic hypermutation in the human Vλ genes indicated that the Igλ-expressing cells function normally. The finding that human λ genes can be utilized with similar efficiency in mice and humans implies that L chain expression is critically dependent on the configuration of the locus.

1987 ◽  
Vol 25 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Ian F. Turnbull ◽  
Kadaba S. Sriprakash ◽  
John D. Mathewst

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1569-1569
Author(s):  
Kilannin Krysiak ◽  
Justin Tibbitts ◽  
Matthew J. Walter

Abstract Myeloid and erythroid differentiation defects and cytopenias are most commonly described in myelodysplastic syndromes (MDS), however, a reduction in B-cell progenitors exists. The genetic events contributing to this reduction are poorly understood. Interstitial deletion or loss of one copy of the long arm of chromosome 5 (del5q) is the most common cytogenetic abnormality associated with MDS. Two commonly deleted regions on del(5q) have been described and no biallelic mutations have been identified implicating haploinsufficiency of genes on this interval as a driving mechanism. We, and others, have identified several del(5q) candidate genes, including RPS14, EGR1, CTNNA1, APC, NPM1, DIAPH1, miR145, miR146a, and HSPA9. Consistent with haploinsufficiency, HSPA9 mRNA levels are 50% reduced in del(5q) patients. We previously showed that knockdown of Hspa9by shRNA in a murine bone marrow transplant model resulted in a significant reduction in murine B-cells in the bone marrow, spleen and peripheral blood. To further characterize the role of Hspa9 in hematopoiesis, we created Hspa9 heterozygous mice (Hspa9+/-). Heterozygotes express 50% less Hspa9 protein and are born at normal Mendelian frequencies (N>100). No significant differences in mature lineage markers, complete blood counts, and hematopoietic organ cellularity, have been identified up to 12 months of age. However, as early as 2 months of age, Hspa9+/- mice show a significant reduction in CFU-PreB colonies compared to their wild-type littermates, indicating B-cell progenitor defects (14 vs. 48 colonies/100,000 bone marrow cells plated, respectively, N=10 mice/genotype, p<0.001). Following long-term engraftment of transplanted bone marrow cells from Hspa9+/-or littermate controls into lethally irradiated recipients, we also observed a 5.8-fold reduction in bone marrow CFU-PreB colonies (N=7-9 mice/genotype, p=0.002), confirming the B-cell progenitor defect is hematopoietic cell-intrinsic. Despite the reduction in CFU-PreB colony numbers, frequencies of freshly isolated early B-cell progenitor and precursor populations in the bone marrow and spleen of Hspa9+/- mice are not different than wild-type littermate controls when assessed by flow cytometry (common lymphoid progenitor, Hardy fractions A-F). We hypothesized that these mice were able to compensate for B-cell alterations caused by loss of Hspa9 in vivo. Consistent with our hypothesis, the reduction in CFU-PreB colony numbers was partially rescued by increasing the concentration of IL-7 in the media. Hspa9+/- colony numbers increased 1.8 fold when the IL-7 concentration was increased from 10ng/mL to 50ng/mL compared to 0.80 fold for wild-type littermates (p=0.03, N=6 mice/genotype). This effect was unique to IL-7. Adding increasing concentrations of Flt-3 ligand, another cytokine that contributes to early B-cell development, did not alter CFU-PreB colony formation. We isolated B220+ cells from Day 7 CFU-PreB cultures for gene expression array analysis and observe reduced expression of genes promoting B-cell proliferation and activation in Hspa9+/- compared to Hspa9+/+ cells. Since IL-7 is the only supportive cytokine in the methylcellulose media, can partially rescue the reduced CFU-PreB phenotype, and is required for early B-cell development and survival, we hypothesized that Hspa9 haploinsufficiency inhibits transduction of IL-7 signaling. We tested this hypothesis using an IL-7 dependent mouse B-cell line (B7 cells; Ba/F3 cells that stably express the IL-7 receptor). Knockdown of Hspa9 by siRNAs resulted in a 8-fold reduction in cell number after 4 days in culture (p=0.004, confirmed with two independent siRNAs) and was associated with an increase in apoptosis and reduction in cells in S-phase of the cell cycle. Knockdown of Hspa9 in B7 cells resulted in reduced levels of phosphorylated Stat5, an immediate downstream target of IL-7 receptor stimulation, compared to cells treated with a non-targeting siRNA (measured at 5, 10, 15 and 30 minutes following 10ng/mL IL-7 stimulation, p≤0.03). Ongoing studies will further interrogate the effects of Hsap9 knockdown on Jak-Stat signaling. Collectively, these data implicate that loss of HSPA9 alters IL-7 signaling, potentially contributing to the reduction of B-cell progenitors observed in patients with del(5q)-associated MDS. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 155 (1) ◽  
pp. 165-170 ◽  
Author(s):  
R Kooijman ◽  
SC van Buul-Offers ◽  
LE Scholtens ◽  
RG Reijnen-Gresnigt ◽  
BJ Zegers

Treatment of mice with IGF-I stimulates T and B cell development. We showed that overexpression of IGF-II in transgenic FVB/N mice only stimulated T cell development. In the present study, we further addressed the in vivo effects of IGF-II in the absence of IGF-I to get more insight into the potential abilities of IGF-II to influence T and B cell development. To this end, we studied lymphocyte development in IGF-II transgenic Snell dwarf mice that are prolactin, GH and thyroid-stimulating hormone deficient and as a consequence show low serum IGF-I levels. We showed that T cell development was stimulated to the same extent as in IGF-II transgenic FVB/N mice. Furthermore, IGF-II increased the number of nucleated bone marrow cells and the number of immature B cells without having an effect on the number of mature B cells in spleen and bone marrow. Our data show that IGF-II has preferential effects on T cell development compared with B development, and that these preferential effects also occur in the absence of measurable IGF-I levels.


1993 ◽  
Vol 11 (8) ◽  
pp. 911-914 ◽  
Author(s):  
Nicholas P. Davies ◽  
Ian R. Rosewell ◽  
Jenny C. Richardson ◽  
Graham P. Cook ◽  
Michael S. Neuberger ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 513-513
Author(s):  
Ling Tian ◽  
Monique Chavez ◽  
Lukas D Wartman

Abstract Loss-of-function mutations in KDM6A, an X-linked H3K27 demethylase, occur recurrently in B-cell lymphoid malignancies, including B-cell acute lymphoblastic leukemia and non-Hodgkin lymphoma. Germline inactivating mutations in KDM6A cause a neurodevelopmental disorder called Kabuki syndrome that is associated with recurrent infections and hypogammaglobulinemia.1 The role of KDM6A in normal B-cell development and function, as well as how the somatic loss of KDM6A contributes to B-cell malignancies, has not been completely defined. To address this issue, we generated a conditional knockout mouse of the KDM6A gene (with LoxP sites flanking the 3rd exon) and crossed these mice with Vav1-Cre transgenic mice to selectively inactivate KDM6A in hematopoietic stem/progenitor cells. We characterized normal hematopoiesis from young (6 to 8 week old) and aged (50 to 55 week old) male and female KDM6A conditional KO mice. We found a significant shift from lymphoid to myeloid differentiation in the bone marrow and peripheral blood of these mice. Young, female KDM6A-null mice had mild splenomegaly. Their spleens had an increased number of neutrophils (Gr-1+CD11b+ cells) and erythrocyte progenitors (CD71+Ter119+ cells) and a decreased number of B-cells (B220+ cells). These changes became more pronounced with age and were specific to the female, homozygous KDM6A knockout mice. Furthermore, analysis of B-cell maturation showed that the loss of KDM6A was associated with decreased immature (B220+IgM+ cells) and mature, resting B-cells (B220+IgD+ cells) in the spleen. Similar changes were present in the bone marrow (decreased B220+IgM+ cells and B220+CD19+ cells) and peripheral blood (decreased B220+IgM+, B220+IgD+ and B220+CD19+ cells). Early B-cell development is also altered in KDM6A-null mice. Flow cytometry showed a decrease in multipotent progenitor cells (MPPs) with a decrease in both common lymphoid progenitors (CLPs) and B cell-biased lymphoid progenitors (BLPs) in young, female KDM6A-null mice bone marrow. Next, we performed flow cytometry to catergorize the Hardy fractions of early B-cell development on bone marrow isolated from young, female KDM6A-null mice. B-cell progenitor analysis (Hardy profiles) showed an increase in Fraction A with a concomitant decrease in Fraction B/C and Fraction D, which was likely indicative of an incomplete block in B-cell differentiation after the Fraction A stage. When bulk bone marrow cells isolated from young, female KDM6A-null mice were plated in methylcellulose supplemented with interleukin-7, we observed a significantly decreased colony formation compared with bone marrow cells isolated from wildtype littermates. This pre-B lymphoid progenitor cell plating phenotype was expected given the flow cytometry results of decreased B-cell progenitors outlined above. We examined the effect of the loss of KDM6A expression on germinal center (GC) formation in the spleen following immunization with NP-CGG (4-Hydroxy-3-nitrophenylacetyl-Chicken Gamma Globulin, Ratio 16). Two weeks after NP-CGG immunization, we observed a significant decrease in follicular B-cells (FO) and a significant increase in GC B-cells as compared to wildtype littermates (Figure 1). The result is significant as GC B-cells are thought to be the cell-of-origin of follicular and DLBCL. To determine if inactivation of KDM6A affected antibody production, we measured IgM, IgG, IgE and IgA levels by ELISA from serum isolated from young, female KDM6A-null mice. Results revealed higher levels of IgM and lower levels of IgG in serum from KDM6A-null mice, which is suggestive of a class switch recombination (CSR) defect. Concordant with this result, we observed that the loss of KDM6A impaired CSR to IgG1 in splenic B cells after in vitro stimulation for three days with lipopolysaccharide (LPS), an anti-CD180 antibody and interleukin-4. Moreover, we observed a striking defect in the production of plasma cells from KDM6A-null B-cells after LPS stimulation. Taken together, our data shows that KDM6A plays an important, but complex, role in B-cell development and that loss of KDM6A impedes the B-cell immune response in a specific manner that may contribute to infection and B-cell malignancies.Stagi S, et al. Epigenetic control of the immune system: a lesson from Kabuki syndrome. Immunol Res. 2016; 64(2):345-359. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5246-5246
Author(s):  
Chantal Lagresle-Peyrou ◽  
Pierre Charneau ◽  
Christophe Hue ◽  
Karine Mollier ◽  
Isabelle Andre-Schmutz ◽  
...  

Abstract Patients lacking expression of either RAG-1 or RAG-2 suffer from a Severe Combined Immuno-Deficiency (SCID) disease characterized by an early block in T and B lymphocytes differentiation leading to the absence of both mature lymphocyte subsets. This disease accounts for about 20% of SCID and the only curative treatment is hematopoietic stem cell transplantation, usually successful when an HLA-genoidentical donor is available. In the absence of such a donor, the success rate decreases along with the degree of HLA disparity between donor and recipient. Ex-vivo gene therapy of hematopoietic stem cells can be considered as an alternative treatment as a selective advantage of transgene-expressing cells is expected. Moreover, constitutive expression of only one of the two RAG proteins should not be harmful as concomitant expression of both genes is required for the recombination activity. We used a lentivecteur containing the RAG-1 cDNA transgene as a therapeutic vector to transduce bone marrow CD34+ cells obtained from RAG-1 deficient patients. The transduced cells were injected into N0D-SCID mice previously irradiated (3Gy) and treated with an anti-TMb1 antibody. Ten weeks after transplantation, in all treated mice, 35±15% of the bone-marrow cells express the human CD45 marker. In this population, 24±2% co-express CD19 and IgM demonstrating that B cell differentiation capacity has been restored. We also detected some CD33+ cells attesting the presence of human myeloid progenitors cells. Altogether, these results suggest that both lymphoid and myeloid precursors have been transduced and demonstrate that gene transfer into hematopoietic cells can reconstitute B cell development in vivo. Our data support the hypothesis that gene therapy could represent a possible alternative to bone marrow transplantation in RAG-1 deficient SCID disease.


1983 ◽  
Vol 158 (6) ◽  
pp. 1948-1961 ◽  
Author(s):  
N R Klinman ◽  
M R Stone

To evaluate the role of environmental selective processes, as opposed to variable region gene expression, in the determination of B cell repertoire expression, we have assessed the phosphorylcholine (PC)-specific repertoire of precursor cells that remain in bone marrow cell populations after the removal of surface immunoglobulin (sIg)-bearing cells. Such cells are assumed to represent a stage in B cell maturation before the expression of sIg, and thus at a time when they have not as yet interfaced with environmental influences that operate through sIg receptors such as antigenic stimulation, tolerance, or antiidiotypic regulation. The repertoire as expressed in these cells, therefore, should reflect the readout of immunoglobulin variable region genes as they are expressed in progenitors to B cells. The results of these studies indicate that, as in mature primary B cell pools of BALB/c mice, the majority of PC-responsive sIg- bone marrow cells are of the T15 clonotype. Thus, environmental selective mechanisms would not appear to be required for the high frequency of B cells of the T15 idiotype in the primary B cell repertoire of BALB/c mice. Analysis of the sIg- bone marrow cells in (CBA/N X BALB/c)F1 male mice demonstrated that the deficit of PC-responsive mature B cells, which is a characteristic of this murine strain, must occur after receptor expression, since a normal frequency of PC-responsive and T15-expressing cells is present in their sIg- bone marrow population. Finally, these same mice were used to obtain bone marrow cell preparations from individual leg bones, so as to permit an analysis of the occurrence of T15+ and T15- clonotypes within individual bone marrow populations. The findings from these studies indicate that T15+ B cells occur as a high frequency event within bone marrow generative cell pools. Furthermore, bone marrow populations that are positive for PC-responsive precursor cells often display multiple copies of such precursor cells that are exclusively either T15+ or T15-. This finding indicates that clonal expansion of cells within the B cell lineage apparently occurs before immunoglobulin receptor acquisition.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4410-4419 ◽  
Author(s):  
Hanna S. Radomska ◽  
David A. Gonzalez ◽  
Yutaka Okuno ◽  
Hiromi Iwasaki ◽  
Andras Nagy ◽  
...  

The human CD34 gene is expressed on early progenitor and stem cells in the bone marrow. Here we report the isolation of the human CD34 locus from a human P1 artificial chromosome (PAC) library and the characterization and evaluation of this genomic fragment for expression of reporter genes in stable cell lines and transgenic mice. We show that a 160-kb fragment spanning 110 kb of the 5′ flanking region and 26 kb of the 3′ flanking region of theCD34 gene directs expression of the human CD34gene in the bone marrow of transgenic mice. The expression of human CD34 transgenic RNA in tissues was found to be similar to that of the endogenous murine CD34 gene. Colony-forming cell assays showed that bone marrow cells staining positive for human CD34 consist of early progenitor cells in which expression of CD34 decreased with cell maturation. In order to test the construct for its ability to express heterologous genes in vivo, we used homologous recombination in bacteria to insert the tetracycline-responsive transactivator protein tTA. Analysis of transgenic human CD34-tTA mice by cross breeding with a strain carrying Cre recombinase under control of a tetracycline-responsive element demonstrated induction of Cre expression in mice in a pattern consistent with the expression of the human CD34 transgene.


2001 ◽  
Vol 21 (5) ◽  
pp. 1531-1539 ◽  
Author(s):  
Jochen Hess ◽  
Peter J. Nielsen ◽  
Klaus-Dieter Fischer ◽  
Hermann Bujard ◽  
Thomas Wirth

ABSTRACT The transcriptional coactivator BOB.1/OBF.1 confers B-cell specificity on the transcription factors Oct1 and Oct2 at octamer site-containing promoters. A hallmark of the BOB.1/OBF.1 mutation in the mouse is the absence of germinal center development in secondary lymphoid organs, demonstrating the requirement for BOB.1/OBF.1 in antigen-dependent stages of B-cell differentiation. Here we analyzed earlier stages of B lymphopoiesis in BOB.1/OBF.1-deficient mice. Examination of B-cell development in the bone marrow revealed that the numbers of transitional immature (B220+ IgMhi) B cells were reduced and that B-cell apoptosis was increased. When in competition with wild-type cells, BOB.1/OBF.1−/− bone marrow cells exhibited defects in repopulating the bone marrow B-cell compartment and were unable to establish a presence in the periphery of host mice. The defective bone marrow populations in BOB.1/OBF.1−/− mice were rescued by conditional expression of a BOB.1/OBF.1 transgene controlled by the tetracycline gene expression system. However, the restored populations did not restore the numbers of IgDhi B cells in the periphery, where the BOB.1/OBF.1 transgene was not expressed. These results show that BOB.1/OBF.1−/− B cells exhibit multistage defects in B-cell development, including impaired production of transitional B cells and defective maturation of recirculating B cells.


Sign in / Sign up

Export Citation Format

Share Document