Restoration of B Cell Development after Lentiviral Transduction of CD34+ Hematopoietic Cells from RAG-1 Deficient Patient.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5246-5246
Author(s):  
Chantal Lagresle-Peyrou ◽  
Pierre Charneau ◽  
Christophe Hue ◽  
Karine Mollier ◽  
Isabelle Andre-Schmutz ◽  
...  

Abstract Patients lacking expression of either RAG-1 or RAG-2 suffer from a Severe Combined Immuno-Deficiency (SCID) disease characterized by an early block in T and B lymphocytes differentiation leading to the absence of both mature lymphocyte subsets. This disease accounts for about 20% of SCID and the only curative treatment is hematopoietic stem cell transplantation, usually successful when an HLA-genoidentical donor is available. In the absence of such a donor, the success rate decreases along with the degree of HLA disparity between donor and recipient. Ex-vivo gene therapy of hematopoietic stem cells can be considered as an alternative treatment as a selective advantage of transgene-expressing cells is expected. Moreover, constitutive expression of only one of the two RAG proteins should not be harmful as concomitant expression of both genes is required for the recombination activity. We used a lentivecteur containing the RAG-1 cDNA transgene as a therapeutic vector to transduce bone marrow CD34+ cells obtained from RAG-1 deficient patients. The transduced cells were injected into N0D-SCID mice previously irradiated (3Gy) and treated with an anti-TMb1 antibody. Ten weeks after transplantation, in all treated mice, 35±15% of the bone-marrow cells express the human CD45 marker. In this population, 24±2% co-express CD19 and IgM demonstrating that B cell differentiation capacity has been restored. We also detected some CD33+ cells attesting the presence of human myeloid progenitors cells. Altogether, these results suggest that both lymphoid and myeloid precursors have been transduced and demonstrate that gene transfer into hematopoietic cells can reconstitute B cell development in vivo. Our data support the hypothesis that gene therapy could represent a possible alternative to bone marrow transplantation in RAG-1 deficient SCID disease.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3465-3465
Author(s):  
Edyta Pawelczyk ◽  
Heba A Degheidy ◽  
Allison L Branchaw ◽  
Kenn Holmbeck ◽  
Steven R Bauer

Abstract Abstract 3465 Introduction: DLK-1(delta-like 1) is a member of the EGF-like homeotic protein family whose expression is known to influence cell fate decisions through cell-cell interactions. It is also known to influence the differentiation of bone marrow stromal cells (BMSC) and hematopoietic stem cells (HSC) in bone marrow. Recently, we reported the essential role of DLK-1 in B cell development, which showed that the absence of DLK-1 led to accumulation of the earliest B cell progenitors (pre-pro B cells or Fraction A (Fr A)) in bone marrow, an altered pattern of B cell development in the spleen, and an altered humoral immune response. The objective of this study was to determine whether alterations in the HSC compartment or the BMSC microenvironment contributed to Fr A accumulation in mdlk1−/− mice. Methods: The mdlk1−/− and wild type bone marrow osteoblast and HSC compartments were analyzed by multicolor flow cytometry and in vitro methyl-cellulose colony forming cell assays. Bone marrow harvested from mdlk1−/− and wild type mice was assessed for BMSCs colony forming efficiency (CFU-F) and cultured. Supernatants from cultured BMSCs were analyzed by protein arrays. Since osteoblasts are an important component of the bone marrow microenvironment, OPN+CD45-TER119-ALP+ osteoblasts were identified in the bone marrow and quantified by flow cytometry. Finally, the femurs of mdlk1−/− and wild type mice were analyzed by micro-computed tomography (uCT) scanning. Results: Using flow cytometry, we observed no statistically significant changes in the HSC and progenitor populations in the absence of DLK-1 in mice at 4 and 16 weeks of age. The results of methyl-cellulose assay confirmed the findings of flow cytometry experiments and showed no statistically significant differences in the number of CFU-G, CFU-GM, and CFU-M of 4 and 16 week old mdlk1−/− mice as compared to wild-type control mice. However, significant alterations in the microenvironment of the mdlkl −/− were observed. CFU-F efficiency of mdlk1−/− bone marrow BMSC isolated from 4 week old mice was significantly decreased when compared to age-matched controls. Furthermore, the uCT scans showed the mineral density of the femoral bone significantly decreased in 4 week old mdlk1−/− mice and the number of osteoblast cells analyzed by flow cytometry was decreased by 10%. The analysis of BMSC supernatants revealed a striking down regulation of factors associated with osteoblast function and differentiation such as osteoactivin, PF-4, Follstatin-like 1, Frizzled-6, IGF-1, M-CSF, DKK-1 and others. Conclusions: Our results indicate that accumulation of the earliest B cell progenitors with DLK-1 ablation is the result of multiple defects in the bone marrow microenvironment including decreased CFU-F, decreased number of osteoblasts, decreased bone mineral density or alterations in factors important for osteoblast function but not from increase in numbers of hematopoietic stem or progenitors cells. Our laboratory is investigating this further. Disclosures: Pawelczyk: Baxter Inc.: currently employed by Baxter Inc. Other.


1994 ◽  
Vol 14 (1) ◽  
pp. 382-390 ◽  
Author(s):  
S Okada ◽  
Z Q Wang ◽  
A E Grigoriadis ◽  
E F Wagner ◽  
T von Rüden

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 79-79
Author(s):  
Zev J. Greenberg ◽  
Darlene A. Monlish ◽  
Rachel L. Bartnett ◽  
Jeffrey J. Bednarski ◽  
Laura G. Schuettpelz

The tetraspanin CD53 has been implicated in B cell development and function. Tetraspanins are a family of transmembrane proteins important for organization of the plasma membrane and regulation of cellular migration, adhesion, and activation. CD53 has been shown to be a transcriptional target of EBF1, a critical transcription factor for early B cell development. Additional signaling for early B cell development occurs through the IL-7 receptor (IL-7R), where ligation promotes continued B cell differentiation and pro-survival/anti-apoptotic gene expression. Human deficiency of CD53 results in recurrent infections and reduced serum immunoglobulins. While prior studies have implicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. Herein, we show that CD53 expression rapidly increases throughout B cell development, beginning at the pre-pro-B cell stage. With a CRISPR-generated knockout mouse, we show that Cd53-/- mice have significantly reduced bone marrow (25% fewer, p<0.005), splenic (35% fewer, p<0.05), lymphatic (65% fewer, p<0.0001), and peripheral (30% fewer, p<0.005) B cells compared to wild-type (WT) littermate controls. Mirroring the human phenotype, Cd53-/- mice have significantly reduced serum IgG and IgM (40% reduced, p<0.01). In addition, hematopoietic stem cells isolated from Cd53-/- mice give rise to 30% fewer B cells compared to controls in vitro (p=0.005). Analysis of bone marrow B cell development demonstrates that this loss of B cells originates with early B cell progenitors, which express nearly 50% less IL-7Ra than WT and reduced IL-7 signaling. Using mass cytometry, we identified differential signaling pathways downstream of IL-7R in B cell progenitors. Specifically, we observe impaired PI3K and STAT5 activation in pre-pro- and pro-B cells in the absence of CD53, with a consequent increase in apoptosis in these populations (p<0.01). Decreased STAT5 phosphorylation was confirmed by western blot. Finally, co-immunoprecipitation studies demonstrate a physical interaction between CD53 and IL-7Ra, suggesting that these proteins associate at the cell surface. Together, these data suggest a novel role for CD53 during IL-7 signaling to promote early B cell development. Ongoing studies are focused on determining the CD53 residues required for interaction with IL-7R. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 124-124
Author(s):  
Ivan Maillard ◽  
Laleh Talebian ◽  
Zhe Li ◽  
Yalin Guo ◽  
Daisuke Sugiyama ◽  
...  

Abstract The family of core binding factors includes the DNA-binding subunits Runx1-3 and the common non-DNA binding partner CBFβ. Runx1 and CBFβ are essential for the emergence of hematopoietic stem cells during fetal development, but not for stem cell maintenance during later ontogeny. Runx1 is also required for megakaryocyte differentiation, B cell development, and for the DN2 to DN3 transition in thymocyte development. Runx2/CBFβ are critical for normal osteogenesis, and Runx3 for CD4 silencing in CD8+ T cells, but their contribution to other steps of hematopoietic development is unknown. To examine the collective role of core binding factors in hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss). CBFβ protein levels were reduced by approximately 2–3 fold in fetuses homozygous for the Cbfbrss allele (Cbfbrss/rss), and 3–4 fold in fetuses carrying one hypomorphic and one knockout allele (Cbfbrss/−). Cbfbrss/rss and Cbfbrss/− fetuses had normal erythroid and B cell development, and relatively mild abnormalities in megakaryocyte and granulocyte differentiation. In contrast, T cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in Cbfbrss/rss fetuses, and virtually absent in Cbfbrss/−fetuses. We next assessed the development of Cbfbrss/rss and Cbfbrss/− fetal liver progenitors after transplantation to irradiated adult recipients, in competition with wild-type (wt) bone marrow cells. Wt, Cbfbrss/rss and Cbfbrss/− fetal progenitors replenished the erythroid, myeloid and B cell compartments equally well. The overall development of Cbfbrss/rss T cells was preserved, although CD4 expression was derepressed in double negative thymocytes. In Cbfbrss/− chimeras, mature thymocytes were entirely derived from competitor cells. Furthermore, the developmental block in Cbfbrss/− progenitors was present at the earliest stages of T cell development within the DN1 (ETP) and DN2 subsets. Our data define a critical CBFβ threshold for normal T cell development, and they situate an essential role of core binding factors during the earliest stages of T cell development. In addition, early thymopoiesis appeared more severely affected by reduced CBFβ dosage than by the lack of Runx1 (Ichikawa et al., Nat Med 2004; Growney et al., Blood 2005), suggesting that Runx2/3 may contribute to core binding factor activity in the T cell lineage.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 220-220 ◽  
Author(s):  
Corey J Cain ◽  
Randell Rueda ◽  
Bryce T McLelland ◽  
Nicole Collette ◽  
Gabriela Loots ◽  
...  

Abstract Abstract 220 Hematopoietic cell fate decisions are dependent on their localized microenvironmental niche. In the bone, endosteal osteoblasts have been shown to support hematopoietic stem cells (HSC) self-renewal, as demonstrated by transgenic and knockout mouse models in which osteoblast populations were increased or decreased. In addition, Wnt signaling and the Wnt antagonist Dkk-1 have been implicated in various aspects of hematopoiesis and HSC self-renewal. Sclerostin (Sost) is a secreted protein that is primarily expressed by fully mature osteocytes and acts on osteoblasts as a negative regulator of bone growth, by antagonizing Wnt signaling by its binding to the Wnt co-receptors Lrp4, Lrp5, and/or Lrp6. Here, we investigated the role of Sost on hematopoiesis in the bone marrow niche. Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in hypermineralized bones with small bone marrow cavities. As such, Sost−/− mice contain markedly reduced numbers of CD45+hematopoietic cells in the bone marrow. Since hematopoietic stem cell activity is dependent on osteoblast function, we examined whether the hyperactive osteoblast activity in Sost−/− mice influences the numbers of hematopoietic stem cells, lymphoid progenitor cells and myeloid progenitor cells in the bone marrow. Surprisingly, no differences were observed in hematopoietic stem and progenitor cell frequency and cell number. However, we found the bone marrow of Sost−/− mice to be depleted of B cells, and this reduction can be attributed to premature apoptosis beginning at the pre-pro-B cell stage. Examination of Sost expression showed that no hematopoietic cells expressed Sost, however, pre-pro, immature and recirculating B cells expressed Lrp5 and Lrp6. These gene expression patterns suggested that the defect in B cell development in Sost−/− mice is non-cell autonomous and that absence of Sost could affect Wnt signaling in these populations. We observed that the expression of Wnt target genes CCND1 and Lef-1 were not affected by the absence of Sost, but c-Myc was significantly upregulated in recirculating B cells in the bone marrow. We also observed a significant decrease in CXCL12 expression in the bone marrow stroma in Sost−/− mice, consistent with their inability to adequately support B cell development. Taken together, our results indicate that the B cell developmental defects in Sost−/− mice are non-cell autonomous, and we are currently performing reciprocal bone marrow transplantation experiments to further support this hypothesis. Our studies demonstrate a novel role for Sost in the regulation of B cell development in the bone marrow, and demonstrate that distinct Wnt antagonists play specific roles in the regulation of hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1569-1569
Author(s):  
Kilannin Krysiak ◽  
Justin Tibbitts ◽  
Matthew J. Walter

Abstract Myeloid and erythroid differentiation defects and cytopenias are most commonly described in myelodysplastic syndromes (MDS), however, a reduction in B-cell progenitors exists. The genetic events contributing to this reduction are poorly understood. Interstitial deletion or loss of one copy of the long arm of chromosome 5 (del5q) is the most common cytogenetic abnormality associated with MDS. Two commonly deleted regions on del(5q) have been described and no biallelic mutations have been identified implicating haploinsufficiency of genes on this interval as a driving mechanism. We, and others, have identified several del(5q) candidate genes, including RPS14, EGR1, CTNNA1, APC, NPM1, DIAPH1, miR145, miR146a, and HSPA9. Consistent with haploinsufficiency, HSPA9 mRNA levels are 50% reduced in del(5q) patients. We previously showed that knockdown of Hspa9by shRNA in a murine bone marrow transplant model resulted in a significant reduction in murine B-cells in the bone marrow, spleen and peripheral blood. To further characterize the role of Hspa9 in hematopoiesis, we created Hspa9 heterozygous mice (Hspa9+/-). Heterozygotes express 50% less Hspa9 protein and are born at normal Mendelian frequencies (N>100). No significant differences in mature lineage markers, complete blood counts, and hematopoietic organ cellularity, have been identified up to 12 months of age. However, as early as 2 months of age, Hspa9+/- mice show a significant reduction in CFU-PreB colonies compared to their wild-type littermates, indicating B-cell progenitor defects (14 vs. 48 colonies/100,000 bone marrow cells plated, respectively, N=10 mice/genotype, p<0.001). Following long-term engraftment of transplanted bone marrow cells from Hspa9+/-or littermate controls into lethally irradiated recipients, we also observed a 5.8-fold reduction in bone marrow CFU-PreB colonies (N=7-9 mice/genotype, p=0.002), confirming the B-cell progenitor defect is hematopoietic cell-intrinsic. Despite the reduction in CFU-PreB colony numbers, frequencies of freshly isolated early B-cell progenitor and precursor populations in the bone marrow and spleen of Hspa9+/- mice are not different than wild-type littermate controls when assessed by flow cytometry (common lymphoid progenitor, Hardy fractions A-F). We hypothesized that these mice were able to compensate for B-cell alterations caused by loss of Hspa9 in vivo. Consistent with our hypothesis, the reduction in CFU-PreB colony numbers was partially rescued by increasing the concentration of IL-7 in the media. Hspa9+/- colony numbers increased 1.8 fold when the IL-7 concentration was increased from 10ng/mL to 50ng/mL compared to 0.80 fold for wild-type littermates (p=0.03, N=6 mice/genotype). This effect was unique to IL-7. Adding increasing concentrations of Flt-3 ligand, another cytokine that contributes to early B-cell development, did not alter CFU-PreB colony formation. We isolated B220+ cells from Day 7 CFU-PreB cultures for gene expression array analysis and observe reduced expression of genes promoting B-cell proliferation and activation in Hspa9+/- compared to Hspa9+/+ cells. Since IL-7 is the only supportive cytokine in the methylcellulose media, can partially rescue the reduced CFU-PreB phenotype, and is required for early B-cell development and survival, we hypothesized that Hspa9 haploinsufficiency inhibits transduction of IL-7 signaling. We tested this hypothesis using an IL-7 dependent mouse B-cell line (B7 cells; Ba/F3 cells that stably express the IL-7 receptor). Knockdown of Hspa9 by siRNAs resulted in a 8-fold reduction in cell number after 4 days in culture (p=0.004, confirmed with two independent siRNAs) and was associated with an increase in apoptosis and reduction in cells in S-phase of the cell cycle. Knockdown of Hspa9 in B7 cells resulted in reduced levels of phosphorylated Stat5, an immediate downstream target of IL-7 receptor stimulation, compared to cells treated with a non-targeting siRNA (measured at 5, 10, 15 and 30 minutes following 10ng/mL IL-7 stimulation, p≤0.03). Ongoing studies will further interrogate the effects of Hsap9 knockdown on Jak-Stat signaling. Collectively, these data implicate that loss of HSPA9 alters IL-7 signaling, potentially contributing to the reduction of B-cell progenitors observed in patients with del(5q)-associated MDS. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 155 (1) ◽  
pp. 165-170 ◽  
Author(s):  
R Kooijman ◽  
SC van Buul-Offers ◽  
LE Scholtens ◽  
RG Reijnen-Gresnigt ◽  
BJ Zegers

Treatment of mice with IGF-I stimulates T and B cell development. We showed that overexpression of IGF-II in transgenic FVB/N mice only stimulated T cell development. In the present study, we further addressed the in vivo effects of IGF-II in the absence of IGF-I to get more insight into the potential abilities of IGF-II to influence T and B cell development. To this end, we studied lymphocyte development in IGF-II transgenic Snell dwarf mice that are prolactin, GH and thyroid-stimulating hormone deficient and as a consequence show low serum IGF-I levels. We showed that T cell development was stimulated to the same extent as in IGF-II transgenic FVB/N mice. Furthermore, IGF-II increased the number of nucleated bone marrow cells and the number of immature B cells without having an effect on the number of mature B cells in spleen and bone marrow. Our data show that IGF-II has preferential effects on T cell development compared with B development, and that these preferential effects also occur in the absence of measurable IGF-I levels.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 513-513
Author(s):  
Ling Tian ◽  
Monique Chavez ◽  
Lukas D Wartman

Abstract Loss-of-function mutations in KDM6A, an X-linked H3K27 demethylase, occur recurrently in B-cell lymphoid malignancies, including B-cell acute lymphoblastic leukemia and non-Hodgkin lymphoma. Germline inactivating mutations in KDM6A cause a neurodevelopmental disorder called Kabuki syndrome that is associated with recurrent infections and hypogammaglobulinemia.1 The role of KDM6A in normal B-cell development and function, as well as how the somatic loss of KDM6A contributes to B-cell malignancies, has not been completely defined. To address this issue, we generated a conditional knockout mouse of the KDM6A gene (with LoxP sites flanking the 3rd exon) and crossed these mice with Vav1-Cre transgenic mice to selectively inactivate KDM6A in hematopoietic stem/progenitor cells. We characterized normal hematopoiesis from young (6 to 8 week old) and aged (50 to 55 week old) male and female KDM6A conditional KO mice. We found a significant shift from lymphoid to myeloid differentiation in the bone marrow and peripheral blood of these mice. Young, female KDM6A-null mice had mild splenomegaly. Their spleens had an increased number of neutrophils (Gr-1+CD11b+ cells) and erythrocyte progenitors (CD71+Ter119+ cells) and a decreased number of B-cells (B220+ cells). These changes became more pronounced with age and were specific to the female, homozygous KDM6A knockout mice. Furthermore, analysis of B-cell maturation showed that the loss of KDM6A was associated with decreased immature (B220+IgM+ cells) and mature, resting B-cells (B220+IgD+ cells) in the spleen. Similar changes were present in the bone marrow (decreased B220+IgM+ cells and B220+CD19+ cells) and peripheral blood (decreased B220+IgM+, B220+IgD+ and B220+CD19+ cells). Early B-cell development is also altered in KDM6A-null mice. Flow cytometry showed a decrease in multipotent progenitor cells (MPPs) with a decrease in both common lymphoid progenitors (CLPs) and B cell-biased lymphoid progenitors (BLPs) in young, female KDM6A-null mice bone marrow. Next, we performed flow cytometry to catergorize the Hardy fractions of early B-cell development on bone marrow isolated from young, female KDM6A-null mice. B-cell progenitor analysis (Hardy profiles) showed an increase in Fraction A with a concomitant decrease in Fraction B/C and Fraction D, which was likely indicative of an incomplete block in B-cell differentiation after the Fraction A stage. When bulk bone marrow cells isolated from young, female KDM6A-null mice were plated in methylcellulose supplemented with interleukin-7, we observed a significantly decreased colony formation compared with bone marrow cells isolated from wildtype littermates. This pre-B lymphoid progenitor cell plating phenotype was expected given the flow cytometry results of decreased B-cell progenitors outlined above. We examined the effect of the loss of KDM6A expression on germinal center (GC) formation in the spleen following immunization with NP-CGG (4-Hydroxy-3-nitrophenylacetyl-Chicken Gamma Globulin, Ratio 16). Two weeks after NP-CGG immunization, we observed a significant decrease in follicular B-cells (FO) and a significant increase in GC B-cells as compared to wildtype littermates (Figure 1). The result is significant as GC B-cells are thought to be the cell-of-origin of follicular and DLBCL. To determine if inactivation of KDM6A affected antibody production, we measured IgM, IgG, IgE and IgA levels by ELISA from serum isolated from young, female KDM6A-null mice. Results revealed higher levels of IgM and lower levels of IgG in serum from KDM6A-null mice, which is suggestive of a class switch recombination (CSR) defect. Concordant with this result, we observed that the loss of KDM6A impaired CSR to IgG1 in splenic B cells after in vitro stimulation for three days with lipopolysaccharide (LPS), an anti-CD180 antibody and interleukin-4. Moreover, we observed a striking defect in the production of plasma cells from KDM6A-null B-cells after LPS stimulation. Taken together, our data shows that KDM6A plays an important, but complex, role in B-cell development and that loss of KDM6A impedes the B-cell immune response in a specific manner that may contribute to infection and B-cell malignancies.Stagi S, et al. Epigenetic control of the immune system: a lesson from Kabuki syndrome. Immunol Res. 2016; 64(2):345-359. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Shunichi Takeda ◽  
Takeyuki Shimizu ◽  
Hans-Reimer Rodewald

Abstract The receptor-type tyrosine kinase, c-kit is expressed in hematopoietic stem cells (HSC), myeloid, and lymphoid precursors. In c-kit ligand-deficient mice, absolute numbers of HSC are mildly reduced suggesting that c-kit is not essential for HSC development. However, c-kit− HSC cannot form spleen colonies or reconstitute hematopoietic functions in lethally irradiated recipient mice. Based on in in vitro experiments, a critical role of c-kit in B-cell development was suggested. Here we have investigated the B-cell development of c-kitnull mutant (W/W ) mice in vivo. Furthermore, day 13 fetal liver cells from wild type or W/W mice were transferred into immunodeficient RAG-2−/− mice. Surprisingly, transferred c-kit− cells gave rise to all stages of immature B cells in the bone marrow and subsequently to mature conventional B2, as well as B1, type B cells in the recipients to the same extent as transferred wild type cells. Hence, in contrast to important roles of c-kit in the expansion of HSC and the generation of erythroid and myeloid lineages and T-cell precursors, c-kit− HSC can colonize the recipient bone marrow and differentiate into B cells in the absence of c-kit.


2018 ◽  
Author(s):  
Arthur Chow ◽  
Jourdan Mason ◽  
Larrisha Coney ◽  
Jamila Bajwa ◽  
Cameron Carlisle ◽  
...  

AbstractUnderstanding how changes in bone physiology and homeostasis affect immune responses will inform how to retain strong immunity in patients with bone disease and in aged individuals. We previously identified sclerostin (Sost) as a mediator of cell communication between the skeletal and the immune system. Elevated bone mineral density in Sost-knockout (Sost-/-) mice contributes to an altered bone marrow microenvironment and adversely affects B cell development. B cells originate from hematopoietic stem cells within the bone marrow and mature in peripheral lymphoid organs to produce antibodies in response to infection and/or vaccination. In this study, we investigated whether the aberrant B cell development observed in the bone marrow of Sost-/- mice extends to peripheral B cells in the spleen during immune challenge, and if these changes were age-dependent. Concomitant with more severe changes in bone architecture, B cell development in the bone marrow and in the spleen worsened with age in Sost-/- mice. B cell responses to T-independent antigens were enhanced in young Sost-/- mice, whereas responses to T-dependent antigens were impaired. Our results support the hypothesis that the adverse effects of B cell development in the Sost-deficient bone marrow microenvironment extends to the peripheral B cell immune response to protein antigens, and suggest that the B cell response to routine vaccinations should be monitored regularly in patients being treated with sclerostin antibody therapy. In addition, our results open the possibility that Sost regulates the T-independent B cell response, which might be applicable to the improvement of vaccines towards non-protein antigens.


Sign in / Sign up

Export Citation Format

Share Document