scholarly journals CpG-matured Murine Plasmacytoid Dendritic Cells Are Capable of In Vivo Priming of Functional CD8 T Cell Responses to Endogenous but Not Exogenous Antigens

2004 ◽  
Vol 199 (4) ◽  
pp. 567-579 ◽  
Author(s):  
Mariolina Salio ◽  
Michael J. Palmowski ◽  
Ann Atzberger ◽  
Ian F. Hermans ◽  
Vincenzo Cerundolo

Plasmacytoid dendritic cells (PDCs) are a unique leukocyte population capable of secreting high levels of type I interferon (IFN) in response to viruses and bacterial stimuli. In vitro experiments have shown that upon maturation, human and murine PDCs develop into potent immunostimulatory cells; however, their ability to prime an immune response in vivo remains to be addressed. We report that CpG-matured murine PDCs are capable of eliciting in naive mice antigen-specific CTLs against endogenous antigens as well as exogenous peptides, but not against an exogenous antigen. Type I IFN is not required for priming, as injection of CpG-matured PDCs into type I IFN receptor–deficient mice elicits functional CTL responses. Mature PDCs prime CTLs that secrete IFN-γ and protect mice from a tumor challenge. In contrast, immature PDCs are unable to prime antigen-specific CTLs. However, mice injected with immature PDCs are fully responsive to secondary antigenic challenges, suggesting that PDCs have not induced long-lasting tolerance via anergic or regulatory T cells. Our results underline the heterogeneity and plasticity of different antigen-presenting cells, and reveal an important role of mature PDCs in priming CD8 responses to endogenous antigens, in addition to their previously reported ability to modulate antiviral responses via type I IFN.

2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3263-3271 ◽  
Author(s):  
Maria Montoya ◽  
Giovanna Schiavoni ◽  
Fabrizio Mattei ◽  
Ion Gresser ◽  
Filippo Belardelli ◽  
...  

Abstract Resting dendritic cells (DCs) are resident in most tissues and can be activated by environmental stimuli to mature into potent antigen-presenting cells. One important stimulus for DC activation is infection; DCs can be triggered through receptors that recognize microbial components directly or by contact with infection-induced cytokines. We show here that murine DCs undergo phenotypic maturation upon exposure to type I interferons (type I IFNs) in vivo or in vitro. Moreover, DCs either derived from bone marrow cells in vitro or isolated from the spleens of normal animals express IFN-α and IFN-β, suggesting that type I IFNs can act in an autocrine manner to activate DCs. Consistent with this idea, the ability to respond to type I IFN was required for the generation of fully activated DCs from bone marrow precursors, as DCs derived from the bone marrow of mice lacking a functional receptor for type I IFN had reduced expression of costimulatory and adhesion molecules and a diminished ability to stimulate naive T-cell proliferation compared with DCs derived from control bone marrow. Furthermore, the addition of neutralizing anti–IFN-α/β antibody to purified splenic DCs in vitro partially blocked the “spontaneous” activation of these cells, inhibiting the up-regulation of costimulatory molecules, secretion of IFN-γ, and T-cell stimulatory activity. These results show that DCs both secrete and respond to type I IFN, identifying type I interferons as autocrine DC activators.


Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Beatriz Escudero-Pérez ◽  
César Muñoz-Fontela

Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.


2011 ◽  
Vol 286 (41) ◽  
pp. 35329-35333 ◽  
Author(s):  
Elena Riboldi ◽  
Roberta Daniele ◽  
Carmen Parola ◽  
Antonio Inforzato ◽  
Phoebe L. Arnold ◽  
...  

Plasmacytoid dendritic cells are specialized in the production of type I interferon (type I IFN), which promotes antiviral and antitumor responses, as well as autoimmune disorders. Activation of type I IFN secretion depends on the pattern recognition receptors TLR7 and TLR9, which sense microbial RNA and DNA, respectively. Type I IFN production is modulated by several receptors, including the type II C-type lectin domain family 4, member C (CLEC4C). The natural ligand of CLEC4C is unknown. To identify it, here we probed a glycan array with a soluble form of the CLEC4C ectodomain. We found that CLEC4C recognizes complex type sugars with terminal galactose. Importantly, soluble CLEC4C bound peripheral blood leukocytes and tumor cells that express glycans with galactose residues at the non-reducing ends. The positive and negative modulation of galactose residues on cell membranes was paralleled by the regulation of type I IFN secretion by plasmacytoid dendritic cells in co-culture experiments in vitro. These results suggest that the modulation in the expression of non-sialylated oligosaccharides by invading pathogens or transformed cells may affect type I IFN response and immune surveillance.


2016 ◽  
Vol 213 (13) ◽  
pp. 2871-2883 ◽  
Author(s):  
Nicole M. Kretzer ◽  
Derek J. Theisen ◽  
Roxane Tussiwand ◽  
Carlos G. Briseño ◽  
Gary E. Grajales-Reyes ◽  
...  

In this study, to examine cross-presentation by classical dendritic cells (DCs; cDCs), we evaluated the role of RAB43, a protein found to be selectively expressed by Batf3-dependent CD8α+ and CD103+ compared with other DC subsets and immune lineages. Using a specific monoclonal antibody, we localized RAB43 expression to the Golgi apparatus and LAMP1− cytoplasmic vesicles. Mice with germline or conditional deletion of Rab43 are viable and fertile and have normal development of cDCs but show a defect for in vivo and in vitro cross-presentation of cell-associated antigen. This defect is specific to cDCs, as Rab43-deficient monocyte-derived DCs showed no defect in cross-presentation of cell-associated antigen. These results suggest that RAB43 provides a specialized activity used in cross-presentation selectively by CD8α+ DCs but not other antigen-presenting cells.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4153-4160 ◽  
Author(s):  
Hiroshi Kohara ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Mamiko Noda ◽  
Nobutaka Fujii ◽  
...  

Plasmacytoid dendritic cells (pDCs), also known as type I interferon (IFN)–producingcells, are thought to play central roles in antiviral immunity and the pathogenesis of some autoimmune diseases. pDCs are produced from hematopoietic stem cells in bone marrow. However, the environmental regulation of the development of pDCs is not fully understood. Here, we show that the numbers of pDCs and their earliest progenitors are severely reduced in the absence of CXCR4, the primary physiologic receptor for CXC chemokine ligand 12 (CXCL12), also known as stromal cell–derived factor-1 (SDF-1) in vivo. In vitro, CXCL12 induces a significant increase in pDC numbers generated from primitive hematopoietic cells, and pDCs and their progenitors migrate to CXCL12. In addition, most pDCs are in contact with CXCL12-abundant reticular (CAR) cells in the intersinal space of bone marrow, although many primitive hematopoietic cells adjoin CAR cells surrounding sinusoidal endothelial cells or residing near the bone surface. Thus we identified CXCL12 as a key regulator of pDC development produced by cellular niches, providing new targets for pDC therapeutic control.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Brian Webster ◽  
Scott W Werneke ◽  
Biljana Zafirova ◽  
Sébastien This ◽  
Séverin Coléon ◽  
...  

Type I interferon (IFN-I) responses are critical for the control of RNA virus infections, however, many viruses, including Dengue (DENV) and Chikungunya (CHIKV) virus, do not directly activate plasmacytoid dendritic cells (pDCs), robust IFN-I producing cells. Herein, we demonstrated that DENV and CHIKV infected cells are sensed by pDCs, indirectly, resulting in selective IRF7 activation and IFN-I production, in the absence of other inflammatory cytokine responses. To elucidate pDC immunomodulatory functions, we developed a mouse model in which IRF7 signaling is restricted to pDC. Despite undetectable levels of IFN-I protein, pDC-restricted IRF7 signaling controlled both viruses and was sufficient to protect mice from lethal CHIKV infection. Early pDC IRF7-signaling resulted in amplification of downstream antiviral responses, including an accelerated natural killer (NK) cell-mediated type II IFN response. These studies revealed the dominant, yet indirect role of pDC IRF7-signaling in directing both type I and II IFN responses during arbovirus infections.


Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3879-3889 ◽  
Author(s):  
Haiyan S. Li ◽  
Alexander Gelbard ◽  
Gustavo J. Martinez ◽  
Eiji Esashi ◽  
Huiyuan Zhang ◽  
...  

Abstract Plasmacytoid dendritic cells (pDCs) reside in bone marrrow and lymphoid organs in homeostatic conditions and typically secrete abundant quantities of type I interferons (IFNs) on Toll-like receptor triggering. Recently, a pDC population was identified within Peyer patches (PPs) of the gut that is distinguished by its lack of IFN production; however, the relationship of PP pDCs to pDCs in other organs has been unclear. We report that PP pDCs are derived from common DC progenitors and accumulate in response to Fms-like tyrosine kinase 3 ligand, yet appear divergent in transcription factor profile and surface marker phenotype, including reduced E2-2 and CCR9 expression. Type I IFN signaling via STAT1 has a cell-autonomous role in accrual of PP pDCs in vivo. Moreover, IFN-α enhances pDC generation from DC progenitors by a STAT1-dependent mechanism. pDCs that have been developed in the presence of IFN-α resemble PP pDCs, produce inflammatory cytokines, stimulate Th17 cell generation, and fail to secrete IFN-α on Toll-like receptor engagement. These results indicate that IFN-α influences the development and function of pDCs by inducing emergence of an inflammatory (Th17-inducing) antigen-presenting subset, and simultaneously regulating accumulation of pDCs in the intestinal microenvironment.


2005 ◽  
Vol 102 (39) ◽  
pp. 13974-13979 ◽  
Author(s):  
J.-P. Herbeuval ◽  
A. W. Hardy ◽  
A. Boasso ◽  
S. A. Anderson ◽  
M. J. Dolan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document