scholarly journals CD27 Expression Promotes Long-Term Survival of Functional Effector–Memory CD8+Cytotoxic T Lymphocytes in HIV-infected Patients

2004 ◽  
Vol 200 (11) ◽  
pp. 1407-1417 ◽  
Author(s):  
Adrian F. Ochsenbein ◽  
Stanley R. Riddell ◽  
Michele Brown ◽  
Lawrence Corey ◽  
Gabriela M. Baerlocher ◽  
...  

Human immunodeficiency virus (HIV)-specific CD8+ T cells persist in high frequencies in HIV-infected patients despite impaired CD4+ T helper response to the virus, but, unlike other differentiated effector cytotoxic T lymphocytes, most continue to express the tumor necrosis factor receptor family member CD27. Because the ligand for CD27 (CD70) is also overexpressed in HIV-infected hosts, we examined the nature of expression and potential functional consequences of CD27 expression on HIV-specific CD8+ T cells. Analysis of CD27+ and CD27− T cells derived from the same HIV-specific clone revealed that retention of CD27 did not interfere with acquisition of effector functions, and that after T cell receptor stimulation, CD27+ cells that concurrently were triggered via CD27 exhibited more resistance to apoptosis, interleukin 2 production, and proliferation than CD27− T cells. After transfer back into an HIV-infected patient, autologous HIV-specific CD27− T cells rapidly disappeared, but CD27+ T cells derived from the same clone persisted at high frequency. Our findings suggest that the CD27–CD70 interaction in HIV infection may provide CD27+ CD8+ T cells with a survival advantage and compensate for limiting or absent CD4+ T help to maintain the CD8 response.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexandria C Wells ◽  
Keith A Daniels ◽  
Constance C Angelou ◽  
Eric Fagerberg ◽  
Amy S Burnside ◽  
...  

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


1998 ◽  
Vol 187 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Yong Ke ◽  
Hakling Ma ◽  
Judith A. Kapp

The mechanisms that maintain memory in T cells are not completely understood. We have investigated the role of antigen and interleukin (IL)-2 in the growth and maintenance of CD8+ T cells using a cytolytic T cell line specific for ovalbumin (OVA)257-264 presented by H-2Kb. This line does not secrete IL-4 or IL-2; hence, stimulation with the OVA-transfected EL4 line (E.G7-OVA) does not induce proliferation without addition of exogenous growth factors. Furthermore, this line can be maintained continuously by weekly addition of irradiated, splenic filler cells and IL-2, with or without E.G7-OVA. Although IL-2 induced proliferation of these cytotoxic T lymphocytes (CTLs), production of interferon γ and tumor necrosis factor α required stimulation of the CTL with E.G7-OVA. The kinetics of lymphokine secretion after stimulation by E.G7-OVA were the same whether the CTL had been maintained with or without antigen (Ag). In addition, both CTL lines killed E.G7-OVA target cells within 4 h. Thus, the effector functions of these CTLs were rapidly induced by T cell receptor (TCR) occupancy. CTLs cultured with or without Ag also served as memory T cells when parked for 100 d in unirradiated, syngeneic recipients without OVA. In the absence of OVA, the precursor frequency was identical in spleens of normal and β2-microglobulin knockout recipients, but significantly less in IL-2 knockout mice. The decline of memory in the absence of IL-2 supports data from other investigators, suggesting that cell cycling is important to the maintenance of CD8+ T cell memory. These data also suggest that stimulation of OVA-specific CTLs by lymphokines seems to be more important to maintaining memory than stimulation of TCRs by cross-reactive peptides complexed to class I molecules.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3065-3072 ◽  
Author(s):  
Michael R. Verneris ◽  
Mobin Karami ◽  
Jeanette Baker ◽  
Anishka Jayaswal ◽  
Robert S. Negrin

Abstract Activating and expanding T cells using T-cell receptor (TCR) cross-linking antibodies and interleukin 2 (IL-2) results in potent cytotoxic effector cells capable of recognizing a broad range of malignant cell targets, including autologous leukemic cells. The mechanism of target cell recognition has previously been unknown. Recent studies show that ligation of NKG2D on natural killer (NK) cells directly induces cytotoxicity, whereas on T cells it costimulates TCR signaling. Here we demonstrate that NKG2D expression is up-regulated upon activation and expansion of human CD8+ T cells. Antibody blocking, redirected cytolysis, and small interfering RNA (siRNA) studies using purified CD8+ T cells demonstrate that cytotoxicity against malignant target cells occurs through NKG2D-mediated recognition and signaling and not through the TCR. Activated and expanded CD8+ T cells develop cytotoxicity after 10 to 14 days of culture, coincident with the expression of the adapter protein DAP10. T cells activated and expanded in low (30 U/mL) and high (300 U/mL) concentrations of IL-2 both up-regulated NKG2D expression equally, but only cells cultured in high-dose IL-2 expressed DAP10 and were cytotoxic. Collectively these results establish that NKG2D triggering accounts for the majority of major histocompatibility complex (MHC)–unrestricted cytotoxicity of activated and expanded CD8+ T cells, likely through DAP10-mediated signaling. (Blood. 2004;103: 3065-3072)


1996 ◽  
Vol 184 (1) ◽  
pp. 149-157 ◽  
Author(s):  
C Reis e Sousa ◽  
E H Levine ◽  
R N Germain

Structural variants of an agonist peptide-major histocompatibility complex (MHC) molecule ligand can show partial agonist and/or antagonist properties. A number of such altered ligands appear to act as pure antagonists. They lack any detectable ability to induce T cell effector function and have been described as unable to induce calcium transients and turnover of inositol phosphates. This has been interpreted as an inability of these ligands to initiate any T cell receptor (TCR)-dependent signal transduction, with their antagonist properties ascribed to competition with offered agonist for TCR occupancy. Yet antagonists for mature CD8+ T cells can induce positive selection of thymocytes, implying active induction of T cell differentiation events, and partial agonists or agonist/antagonist combinations elicit a distinctive pattern of early TCR-associated tyrosine phosphorylation events in CD4+ T cells. We have therefore directly examined proximal TCR signaling in a CD8+ T cell line in response to various related ligands. TCR engagement with natural peptide-MHC class I agonist resulted in the same pattern of early TCR-associated tyrosine phosphorylation events as seen with CD4+ cells, including accumulation of both the p21 and p23 forms of phosphorylated zeta, phosphorylation of CD3 epsilon, and association of phosphorylated ZAP-70 with the TCR. Two antagonists that lacked the ability to induce any detectable CTL effector response (cytolysis, esterase release, gamma interferon secretion, interleukin-2 receptor alpha upregulation) were nevertheless found to also induce TCR-dependent phosphorylation events. In these cases, there was preferential accumulation of the p21 form of phospho-zeta without net phosphorylation of CD3 epsilon, as well as the association of nonphosphorylated ZAP-70 kinase with the receptor. These data show that variant ligands induce similar TCR-dependent phosphorylation events in CD8+ T cells as first observed in CD4+ cells. More importantly, they demonstrate that some putatively pure antagonists are actually a subset of partial agonists able to induce intracellular biochemical changes through the TCR. This delivery of a partial signal by antagonists raises the possibility that antagonism in some cases may result from active interference with stimulation of effector activity by agonist in mature T cells, while the same variant signal could selectively trigger intracellular events that allow positive without negative selection in thymocytes.


Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 215-223 ◽  
Author(s):  
Marie-Liesse Asselin-Labat ◽  
Muriel David ◽  
Armelle Biola-Vidamment ◽  
Damiana Lecoeuche ◽  
Maria-Christina Zennaro ◽  
...  

Abstract Interleukin-2 (IL-2) withdrawal is a physiologic process inducing cell death in activated T lymphocytes. Glucocorticoid-induced leucine zipper (GILZ) has recently been identified as a protein modulating T-cell receptor activation by repressing various signaling pathways. We report here that IL-2 deprivation leads to expression of GILZ in T lymphocytes. We then characterized the human gilz promoter and showed that FoxO3 (Forkhead box class O3) binding to the Forkhead responsive elements identified in the promoter is necessary for induction of gilz expression upon IL-2 withdrawal. To assess the functional consequences of this induction, we used 2 strategies, GILZ overexpression and GILZ silencing in murine IL-2–dependent CTLL-2 cells. GILZ overexpression protects CTLL-2 cells from IL-2 withdrawal–induced apoptosis, whereas cell death is accelerated in cells unable to express GILZ. Concomitantly, the expression of Bim is inhibited in GILZ-overexpressing cells and enhanced when GILZ expression is impaired. Furthermore, GILZ inhibits FoxO3 transcriptional activity that leads to inhibition of Bim expression but also to down-regulation of GILZ itself. Therefore, GILZ is a transiently expressed protein induced upon IL-2 withdrawal that protects T cells from the onset of apoptosis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4079-4079
Author(s):  
Lei Bao ◽  
Mindy M Stamer ◽  
Kimberly Dunham ◽  
Deepa Kolaseri Krishnadas ◽  
Kenneth G Lucas

Abstract Abstract 4079 Poster Board III-1014 MAGE A1 and MAGE A3 are cancer testis antigens that are expressed on a number of malignant tumor cells, but not by normal cells, except for male germ cells which lack HLA expression. Therefore, MAGE cytotoxic T lymphocytes are strictly tumor-specific. Adoptive transfer of antigen specific cytotoxic T lymphocytes (CTL) provides immediate graft-versus tumor effects while minimizing risk for graft-versus-host disease. The aim of the current study was to find ideal conditions for expansion of CTL targeting tumor-associated antigens from peripheral blood mononuclear cells (PBMCs) of healthy donors to be used in allogenic cell therapy. In this study we investigated the ability to generate MAGE A1 and MAGE A3 specific cytotoxic T cells using autologous dendritic cells (DC) loaded with MAGE A1 and MAGE A3 overlapping peptides. CTL lines specific for MAGE A1 and MAGE A3 were established by stimulating CD8 T cells from healthy donors with autologous dendritic cells loaded with MAGE A1 or MAGE A3 overlapping pooled peptides in round-bottomed, 96-well plates. CD8+ T cells were restimulated with the same ratio of peptide pulsed DC on days 7 and 14 in the presence of IL-2 (50 U/ml), IL-7 and IL-15 (5 ng/ml). These microcultures were screened 10 days after the third stimulation for their capacity to produce interferon-gamma (IFN-gamma) when stimulated with autologous EBV-transformed B lymphocytes (BLCL) transduced with lentivirus(LV) encoding MAGE A1 or MAGE A3 and autologous BLCL transduced with LV encoding GFP. MAGE A1 and MAGE-A3 specific IFN-gamma producing cells were rapidly expanded in OKT3 and IL2. The specificity of the rapidly expanded MAGE A1 and MAGE A3 specific T cells was confirmed by IFN-gamma production as measured by intracellular cytokine staining and ELISA as well as antigen specific cytotoxicity by a standard 51chromium (51Cr) release assay. We successfully generated MAGE A1 and MAGE A3 specific CTL lines from healthy donors using this method. Specific CTL lines showed cytotoxicity in vitro not only to target cells pulsed with MAGE A1 or MAGE A3 peptides but also to target cells transduced with LV-MAGE A1 or LV-MAGE A3. Specific cytolytic activity was accompanied by IFN-gamma secretion. These data indicate that tumor antigen specific CTL can be expanded using overlapping peptides regardless of an individual's HLA specificity. The ability to generate tumor specific CTL from donors of various HLA backgrounds provide a rationale for utilizing MAGE A1 and MAGE A3 overlapping peptides for expansion of antigen specific T cells for adoptive T-cell therapy against MAGE A1 or MAGE A3 expressing tumors. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 194 (5) ◽  
pp. 685-694 ◽  
Author(s):  
X.-L. Zhang ◽  
S. Zhao ◽  
S.H. Borenstein ◽  
Y. Liu ◽  
B. Jayabalasingham ◽  
...  

Control of CD8α transcription during development of α/β T cell receptor (TCR) T lymphocytes is mediated by at least two distinct stage-specific cis-acting transcriptional mechanisms (i.e., enhancers). On the CD8α−/−knockout (KO) background, cis-mechanism I and cis-mechanism II together mediate appropriate stage- and sublineage-specific transgenic (Tg) CD8α expression and “rescue” development of peripheral CD8+ single-positive (SP) cytotoxic T lymphocytes (CTLs). In contrast, on the wild-type (WT)/CD8+/+ or CD8α−/−KO backgrounds, a CD8α Tg directed by cis-mechanism I alone is activated during the double negative [DN] to double positive [DP] transition and expressed up to the CD3low/intermediate DP stage but not in more mature DP or SP thymocytes or peripheral T cells. As loss of cis mechanism I activity occurs around the onset of positive selection, it is possible that events associated with TCR/major histocompatibility complex (MHC) interactions and selection are involved in initiating these changes in CD8α transcription. To examine this issue, phenotypic and functional studies were performed for thymocytes and T cells of CD8α−/−KO mice that expressed a CD8α Tg under control of cis-mechanism I only. Despite loss of CD8α expression at the DP CD3low/intermediate stage, increased populations of mature CD3hiCD4−CD8− thymocytes and CD3+CD4−CD8− peripheral T cells were detected. By several criteria, including MHC class I–restricted antigen recognition, these cells have at least partially undergone positive and negative selection. Therefore, initiation of selection and sublineage commitment are determined before loss of cis-mechanism I–mediated control of CD8α transcription. Further, CD8 expression beyond the CD3low/intermediate DP thymic stage is not essential for CTL development in vivo or function.


2003 ◽  
Vol 10 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Monica Kharbanda ◽  
Thomas W. McCloskey ◽  
Rajendra Pahwa ◽  
Mei Sun ◽  
Savita Pahwa

ABSTRACT Perturbations in the T-cell receptor (TCR) Vβ repertoire were assessed in the CD4 and CD8 T lymphocytes of human immunodeficiency virus (HIV)-infected children who were receiving therapy during the chronic phase of infection by flow cytometry (FC) and PCR analysis. By FC, representation of 21 TCR Vβ subfamilies was assessed for an increased or decreased percentage in CD4 and CD8 T cells, and by PCR, 22 TCR Vβ subfamilies of CD4 and CD8 T cells were analyzed by CDR3 spectratyping for perturbations and reduction in the number of peaks, loss of Gaussian distribution, or clonal dominance. The majority of the TCR Vβ subfamilies were examined by both methods and assessed for deviation from the norm by comparison with cord blood samples. The CD8-T-lymphocyte population exhibited more perturbations than the CD4 subset, and clonal dominance was present exclusively in CD8 T cells. Of the 55 total CD8-TCR Vβ families classified with clonal dominance by CDR3 spectratyping, only 18 of these exhibited increased expression by FC. Patients with high numbers of CD8-TCR Vβ families with decreased percentages had reduced percentages of total CD4 T cells. Increases in the number of CD4-TCR Vβ families with increased percentages showed a positive correlation with skewing. Overall, changes from normal were often discordant between the two methods. This study suggests that the assessment of HIV-induced alterations in TCR Vβ families at cellular and molecular levels yields different information and that our understanding of the immune response to HIV is still evolving.


Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1667-1677 ◽  
Author(s):  
Judy Lieberman ◽  
Premlata Shankar ◽  
N. Manjunath ◽  
Jan Andersson

Abstract CD8 T cells play an important role in protection and control of HIV-1 by direct cytolysis of infected cells and by suppression of viral replication by secreted factors. However, although HIV-1–infected individuals have a high frequency of HIV-1–specific CD8 T cells, viral reservoirs persist and progressive immunodeficiency generally ensues in the absence of continuous potent antiviral drugs. Freshly isolated HIV-specific CD8 T cells are often unable to lyse HIV-1–infected cells. Maturation into competent cytotoxic T lymphocytes may be blocked during the initial encounter with antigen because of defects in antigen presentation by interdigitating dendritic cells or HIV-infected macrophages. The molecular basis for impaired function is multifactorial, due to incomplete T-cell signaling and activation (in part related to CD3ζ and CD28 down-modulation), reduced perforin expression, and inefficient trafficking of HIV-specific CD8 T cells to lymphoid sites of infection. CD8 T-cell dysfunction can partially be corrected in vitro with short-term exposure to interleukin 2, suggesting that impaired HIV-specific CD4 T helper function may play a significant causal or exacerbating role. Functional defects are qualitatively different and more severe with advanced disease, when interferon γ production also becomes compromised.


Sign in / Sign up

Export Citation Format

Share Document