scholarly journals Single cell analysis shows decreasing FoxP3 and TGFβ1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes

2005 ◽  
Vol 201 (8) ◽  
pp. 1333-1346 ◽  
Author(s):  
Shannon M. Pop ◽  
Carmen P. Wong ◽  
Donna A. Culton ◽  
Stephen H. Clarke ◽  
Roland Tisch

Natural CD4+CD25+ regulatory T (CD4+CD25+ T reg) cells play a key role in the immunoregulation of autoimmunity. However, little is known about the interactions between CD4+CD25+ T reg cells and autoreactive T cells. This is due, in part, to the difficulty of using cell surface markers to identify CD4+CD25+ T reg cells accurately. Using a novel real-time PCR assay, mRNA copy number of FoxP3, TGFβ1, and interleukin (IL)-10 was measured in single cells to characterize and quantify CD4+CD25+ T reg cells in the nonobese diabetic (NOD) mouse, a murine model for type 1 diabetes (T1D). The suppressor function of CD4+CD25+CD62Lhi T cells, mediated by TGFβ, declined in an age-dependent manner. This loss of function coincided with a temporal decrease in the percentage of FoxP3 and TGFβ1 coexpressing T cells within pancreatic lymph node and islet infiltrating CD4+CD25+CD62Lhi T cells, and was detected in female NOD mice but not in NOD male mice, or NOR or C57BL/6 female mice. These results demonstrate that the majority of FoxP3-positive CD4+CD25+ T reg cells in NOD mice express TGFβ1 but not IL-10, and that a defect in the maintenance and/or expansion of this pool of immunoregulatory effectors is associated with the progression of T1D.

2001 ◽  
Vol 194 (3) ◽  
pp. 313-320 ◽  
Author(s):  
Bin Wang ◽  
Yan-Biao Geng ◽  
Chyung-Ru Wang

NK T cells are a unique subset of T cells that recognize lipid antigens presented by CD1d. After activation, NK T cells promptly produce large amounts of cytokines, which may modulate the upcoming immune responses. Previous studies have documented an association between decreased numbers of NK T cells and the progression of some autoimmune diseases, suggesting that NK T cells may control the development of autoimmune diseases. To investigate the role of NK T cells in autoimmune diabetes, we crossed CD1 knockout (CD1KO) mutation onto the nonobese diabetic (NOD) genetic background. We found that male CD1KO NOD mice exhibited significantly higher incidence and earlier onset of diabetes compared with the heterozygous controls. The diabetic frequencies in female mice showed a similar pattern; however, the differences were less profound between female CD1KO and control mice. Early treatment of NOD mice with α-galactosylceramide, a potent NK T cell activator, reduced the severity of autoimmune diabetes in a CD1-dependent manner. Our results not only suggest a protective role of CD1-restricted NK T cells in autoimmune diabetes but also reveal a causative link between the deficiency of NK T cells and the induction of insulin-dependent diabetes mellitus.


2004 ◽  
Vol 199 (11) ◽  
pp. 1467-1477 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Sayuri Yamazaki ◽  
Kara Olson ◽  
Priscilla Toy ◽  
Ralph M. Steinman

In the nonobese diabetic (NOD) mouse model of type 1 diabetes, the immune system recognizes many autoantigens expressed in pancreatic islet β cells. To silence autoimmunity, we used dendritic cells (DCs) from NOD mice to expand CD25+ CD4+ suppressor T cells from BDC2.5 mice, which are specific for a single islet autoantigen. The expanded T cells were more suppressive in vitro than their freshly isolated counterparts, indicating that DCs from autoimmune mice can increase the number and function of antigen-specific, CD25+ CD4+ regulatory T cells. Importantly, only 5,000 expanded CD25+ CD4+ BDC2.5 T cells could block autoimmunity caused by diabetogenic T cells in NOD mice, whereas 105 polyclonal, CD25+ CD4+ T cells from NOD mice were inactive. When islets were examined in treated mice, insulitis development was blocked at early (3 wk) but not later (11 wk) time points. The expanded CD25+ CD4+ BDC2.5 T cells were effective even if administered 14 d after the diabetogenic T cells. Our data indicate that DCs can generate CD25+ CD4+ T cells that suppress autoimmune disease in vivo. This might be harnessed as a new avenue for immunotherapy, especially because CD25+ CD4+ regulatory cells responsive to a single autoantigen can inhibit diabetes mediated by reactivity to multiple antigens.


1989 ◽  
Vol 169 (5) ◽  
pp. 1669-1680 ◽  
Author(s):  
C Boitard ◽  
R Yasunami ◽  
M Dardenne ◽  
J F Bach

The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for accelerated disease. Suppressor phenomena were detected by testing the protection afforded by lymphoid cells from nondiabetic NOD mice against diabetes transfer in irradiated recipients. Transfer of diabetes was delayed by reconstituting recipients with spleen cells from nondiabetic NOD donors. The greatest protection against diabetes transfer was conferred by spleen cells from 8-wk-old nondiabetic female NOD mice. Depletion experiments showed that the protection was dependent on CD4+ cells. Protection was also detected within thymic cells from nondiabetic NOD mice and protection conferred by spleen cells was abrogated by thymectomy of nondiabetic female, but not male, NOD donors at 3 wk of age. These findings indicate that suppressive CD4+ T cells that are dependent on the presence of the thymus may delay the onset of diabetes in female diabetes-prone NOD mice.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Manal Alkan ◽  
François Machavoine ◽  
Rachel Rignault ◽  
Julie Dam ◽  
Michel Dy ◽  
...  

Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/−mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γin HDC−/−mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/−mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.


1995 ◽  
Vol 181 (3) ◽  
pp. 1145-1155 ◽  
Author(s):  
D J Lenschow ◽  
S C Ho ◽  
H Sattar ◽  
L Rhee ◽  
G Gray ◽  
...  

Insulin-dependent diabetes mellitus (IDDM) is thought to be an immunologically mediated disease resulting in the complete destruction of the insulin-producing islets of Langerhans. It has become increasingly clear that autoreactive T cells play a major role in the development and progression of this disease. In this study, we examined the role of the CD28/B7 costimulation pathway in the development and progression of autoimmune diabetes in the nonobese diabetic (NOD) mouse model. Female NOD mice treated at the onset of insulitis (2-4 wk of age) with CTLA4Ig immunoglobulin (Ig) (a soluble CD28 antagonist) or a monoclonal antibody (mAb) specific for B7-2 (a CD28 ligand) did not develop diabetes. However, neither of these treatments altered the disease process when administered late, at > 10 wk of age. Histological examination of islets from the various treatment groups showed that while CTLA4Ig and anti-B7-2 mAb treatment blocked the development of diabetes, these reagents had little effect on the development or severity of insulitis. Together these results suggest that blockade of costimulatory signals by CTLA4Ig or anti-B7-2 acts early in disease development, after insulitis but before the onset of frank diabetes. NOD mice were also treated with mAbs to another CD28 ligand, B7-1. In contrast to the previous results, the anti-B7-1 treatment significantly accelerated the development of disease in female mice and, most interestingly, induced diabetes in normally resistant male mice. A combination of anti-B7-1 and anti-B7-2 mAbs also resulted in an accelerated onset of diabetes, similar to that observed with anti-B7-1 mAb treatment alone, suggesting that anti-B7-1 mAb's effect was dominant. Furthermore, treatment with anti-B7-1 mAbs resulted in a more rapid and severe infiltrate. Finally, T cells isolated from the pancreas of these anti-B7-1-treated animals exhibited a more activated phenotype than T cells isolated from any of the other treatment groups. These studies demonstrate that costimulatory signals play an important role in the autoimmune process, and that different members of the B7 family have distinct regulatory functions during the development of autoimmune diabetes.


1996 ◽  
Vol 184 (5) ◽  
pp. 1963-1974 ◽  
Author(s):  
I S Grewal ◽  
K D Grewal ◽  
F S Wong ◽  
D E Picarella ◽  
C A Janeway ◽  
...  

Lately, TNF alpha has been the focus of studies of autoimmunity; its role in the progression of autoimmune diabetes is, however, still unclear. To analyze the effects of TNF alpha in insulin-dependent diabetes mellitus (IDDM), we have generated nonobese diabetic (NOD) transgenic mice expressing TNF alpha under the control of the rat insulin II promoter (RIP). In transgenic mice, TNF alpha expression on the islets resulted in massive insulitis, composed of CD4+ T cells, CD8+ T cells, and B cells. Despite infiltration of considerable number of lymphoid cells in islets, expression of TNF alpha protected NOD mice from IDDM. To determine the mechanism of TNF alpha action, splenic cells from control NOD and RIP-TNF alpha mice were adoptively transferred to NOD-SCID recipients. In contrast to the induction of diabetes by splenic cells from control NOD mice, splenic cells from RIP-TNF alpha transgenic mice did not induce diabetes in NOD-SCID recipients. Diabetes was induced however, in the RIP-TNF alpha transgenic mice when CD8+ diabetogenic cloned T cells or splenic cells from diabetic NOD mice were adoptively transferred to these mice. Furthermore, expression of TNF alpha in islets also downregulated splenic cell responses to autoantigens. These data establish a mechanism of TNF alpha action and provide evidence that local expression of TNF alpha protects NOD mice from autoimmune diabetes by preventing the development of autoreactive islet-specific T cells.


2002 ◽  
Vol 196 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Marie-Claude Gagnerault ◽  
Jian Jian Luan ◽  
Chantal Lotton ◽  
Françoise Lepault

Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that results from the destruction of insulin secreting β cells by diabetogenic T cells. The time and location of the encounter of autoantigen(s) by naive autoreactive T cells in normal NOD mice are still elusive. To address these issues, we analyzed diabetes development in mice whose spleen or pancreatic lymph nodes (panLNs) had been removed. Excision of panLNs (panLNx) at 3 wk protected mice against insulin autoantibodies (IAAs), insulitis, and diabetes development almost completely, but had no effect when performed at 10 wk. The protection afforded by panLNx at weaning was not due to modifications of the immune system, the absence of autoreactive T cells, or the increase in the potency of regulatory T cells. That panLNs are dispensable during adult life was confirmed by the capacity of 10-wk-old panLNx irradiated recipients to develop diabetes upon transfer of diabetogenic T cells. In contrast, splenectomy had no effect at any age. Partial excision of mesenteric LN at 3 wk did not prevent accelerated diabetes by cyclophosphamide as panLNx did. Thus, in normal NOD mice, autoreactive T cell initial priming occurs in LNs draining the target organ of the disease from 3 wk of age.


2007 ◽  
Vol 204 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Lucine Petit ◽  
Xiaopan Zuo ◽  
Priscilla Toy ◽  
Xunrong Luo ◽  
...  

Most treatments that prevent autoimmune diabetes in nonobese diabetic (NOD) mice require intervention at early pathogenic stages, when insulitis is first developing. We tested whether dendritic cell (DC)–expanded, islet antigen–specific CD4+ CD25+ suppressor T cells could treat diabetes at later stages of disease, when most of the insulin-producing islet β cells had been destroyed by infiltrating lymphocytes. CD4+ CD25+ CD62L+ regulatory T cells (T reg cells) from BDC2.5 T cell receptor transgenic mice were expanded with antigen-pulsed DCs and IL-2, and were then injected into NOD mice. A single dose of as few as 5 × 104 of these islet-specific T reg cells blocked diabetes development in prediabetic 13-wk-old NOD mice. The T reg cells also induced long-lasting reversal of hyperglycemia in 50% of mice in which overt diabetes had developed. Successfully treated diabetic mice had similar responses to glucose challenge compared with nondiabetic NOD mice. The successfully treated mice retained diabetogenic T cells, but also had substantially increased Foxp3+ cells in draining pancreatic lymph nodes. However, these Foxp3+ cells were derived from the recipient mice and not the injected T reg cells, suggesting a role for endogenous T reg cells in maintaining tolerance after treatment. Therefore, inoculation of DC-expanded, antigen-specific suppressor T cells has considerable efficacy in ameliorating ongoing diabetes in NOD mice.


2020 ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

AbstractThe transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present, but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice, but diminished in monoclonal models specific to artificial or neoantigens. Rationally-designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels, and reduced T cell infiltration and proinflammatory cytokine expression in newly-diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.~40-word summary statement for the online JEM table of contents and alertsKim and colleagues show that OCA-B in T cells is essential for the generation of type-1 diabetes. OCA-B loss leaves the pancreatic lymph nodes largely undisturbed, but associates autoreactive CD4+ T cells in the pancreas with anergy while deleting potentially autoreactive CD8+ T cells.SummaryKim et al. show that loss or inhibition of OCA-B in T cells protects mice from type-1 diabetes.


1997 ◽  
Vol 186 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Syamasundar V. Pakala ◽  
Michael O. Kurrer ◽  
Jonathan D. Katz

Autoimmune diabetes is caused by the CD4+, T helper 1 (Th1) cell-mediated apoptosis of insulin-producing β cells. We have previously shown that Th2 T cells bearing the same T cell receptor (TCR) as the diabetogenic Th1 T cells invade islets in neonatal nonobese diabetic (NOD) mice but fail to cause disease. Moreover, when mixed in excess and cotransferred with Th1 T cells, Th2 T cells could not protect NOD neonates from Th1-mediated diabetes. We have now found, to our great surprise, the same Th2 T cells that produced a harmless insulitis in neonatal NOD mice produced intense and generalized pancreatitis and insulitis associated with islet cell necrosis, abscess formation, and subsequent diabetes when transferred into immunocompromised NOD.scid mice. These lesions resembled allergic inflamation and contained a large eosinophilic infiltrate. Moreover, the Th2-mediated destruction of islet cells was mediated by local interleukin-10 (IL-10) production but not by IL-4. These findings indicate that under certain conditions Th2 T cells may not produce a benign or protective insulitis but rather acute pathology and disease. Additionally, these results lead us to question the feasibility of Th2-based therapy in type I diabetes, especially in immunosuppressed recipients of islet cell transplants.


Sign in / Sign up

Export Citation Format

Share Document