scholarly journals Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid

2007 ◽  
Vol 204 (8) ◽  
pp. 1775-1785 ◽  
Author(s):  
Cheng-Ming Sun ◽  
Jason A. Hall ◽  
Rebecca B. Blank ◽  
Nicolas Bouladoux ◽  
Mohamed Oukka ◽  
...  

To maintain immune homeostasis, the intestinal immune system has evolved redundant regulatory strategies. In this regard, the gut is home to a large number of regulatory T (T reg) cells, including the Foxp3+ T reg cell. Therefore, we hypothesized that the gut environment preferentially supports extrathymic T reg cell development. We show that peripheral conversion of CD4+ T cells to T reg cells occurs primarily in gut-associated lymphoid tissue (GALT) after oral exposure to antigen and in a lymphopenic environment. Dendritic cells (DCs) purified from the lamina propria (Lp; LpDCs) of the small intestine were found to promote a high level of T reg cell conversion relative to lymphoid organ–derived DCs. This enhanced conversion by LpDCs was dependent on TGF-β and retinoic acid (RA), which is a vitamin A metabolite highly expressed in GALT. Together, these data demonstrate that the intestinal immune system has evolved a self-contained strategy to promote T reg cell neoconversion.

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Elliot W. Kim ◽  
Avelino De Leon ◽  
Zhichun Jiang ◽  
Roxana A. Radu ◽  
Adrian R. Martineau ◽  
...  

ABSTRACTEpidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-transretinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response againstMycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity fromM. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) orN,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCETuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway inMycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses againstM. tuberculosis. By combining establishedin vitromodels within situstudies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2115
Author(s):  
Stéphanie Ferret-Bernard ◽  
Laurence Le Normand ◽  
Véronique Romé ◽  
Cindy Le Bourgot ◽  
Julie Seeboth ◽  
...  

The early life period is crucial for the maturation of the intestinal barrier, its immune system, and a life-long beneficial host–microbiota interaction. The study aims to assess the impact of a beneficial dietary (short-chain fructooligosaccharides, scFOS) supplementation vs. a detrimental dietary environment (such as mycotoxin deoxynivalenol, DON) on offspring intestinal immune system developmental profiles. Sows were given scFOS-supplemented or DON-contaminated diets during the last 4 weeks of gestation, whereas force-feeding piglets with DON was performed during the first week of offspring life. Intestinal antigen-presenting cell (APC) subset frequency was analyzed by flow cytometry in the Peyer’s patches and in lamina propria and the responsiveness of intestinal explants to toll-like receptor (TLR) ligands was performed using ELISA and qRT-PCR from post-natal day (PND) 10 until PND90. Perinatal exposure with scFOS did not affect the ontogenesis of APC. While it early induced inflammatory responses in piglets, scFOS further promoted the T regulatory response after TLR activation. Sow and piglet DON contamination decreased CD16+ MHCII+ APC at PND10 in lamina propria associated with IFNγ inflammation and impairment of Treg response. Our study demonstrated that maternal prebiotic supplementation and mycotoxin contamination can modulate the mucosal immune system responsiveness of offspring through different pathways.


2009 ◽  
Vol 206 (13) ◽  
pp. 3115-3130 ◽  
Author(s):  
Florent Ginhoux ◽  
Kang Liu ◽  
Julie Helft ◽  
Milena Bogunovic ◽  
Melanie Greter ◽  
...  

CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program.


2006 ◽  
Vol 203 (3) ◽  
pp. 519-527 ◽  
Author(s):  
Tim Worbs ◽  
Ulrike Bode ◽  
Sheng Yan ◽  
Matthias W. Hoffmann ◽  
Gabriele Hintzen ◽  
...  

Oral tolerance induction is a key feature of intestinal immunity, generating systemic nonresponsiveness to ingested antigens. In this study, we report that orally applied soluble antigens are exclusively recognized in the intestinal immune system, particularly in the mesenteric lymph nodes. Consequently, the initiation of oral tolerance is impeded by mesenteric lymphadenectomy. Small bowel transplantation reveals that mesenteric lymph nodes require afferent lymph to accomplish the recognition of orally applied antigens. Finally, oral tolerance cannot be induced in CCR7-deficient mice that display impaired migration of dendritic cells from the intestine to the mesenteric lymph nodes, suggesting that immunologically relevant antigen is transported in a cell-bound fashion. These results demonstrate that antigen transport via afferent lymphatics into the draining mesenteric lymph nodes is obligatory for oral tolerance induction, inspiring new therapeutic strategies to exploit oral tolerance induction for the prevention and treatment of autoimmune diseases.


1997 ◽  
Vol 5 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Jessica C. A. Ter Steege ◽  
Wim A. Buurman ◽  
Pierre-Philippe Forget

During early neonatal life, important changes occur in the gut. The intestine is challenged by both milk and a microbial flora. Later on, at weaning, the diet of mice changes from milk to pelleted food leading to changes in microbial contents. This period seems essential for a complete development of the mucosal immune system. We investigated the development of both intraepithelial (IEL) and lamina propria lymphocytes (LPL), from day 5, and every 5 days, up to day 30 after birth. IEL and LPL were isolated from the small intestine and the phenotype was assessed by FACS analyses, using antibodies for detection of T-cell markers CD3, TCRαβ, TCRγδ, CD4, CD8α, CD8β, CD5, CD18, CD54, and CD49d. Our data show a clear increase in the number of LPL just before weaning, while the number of IEL increased after day 15. A more mature pattern of membrane antigen expression of both IEL and LPL was observed at weaning. The adhesion molecules CD18, CD54, and CD49d, essential for cellular communication of lymphocytes, showed an expression peak at weaning. In conclusion, the mouse mucosal immune system develops during the first 3 weeks of neonatal life leading to the formation of a more mature immune system at weaning.


1999 ◽  
Vol 67 (7) ◽  
pp. 3504-3511 ◽  
Author(s):  
Yoshinori Umesaki ◽  
Hiromi Setoyama ◽  
Satoshi Matsumoto ◽  
Akemi Imaoka ◽  
Kikuji Itoh

ABSTRACT The presence of microflora in the digestive tract promotes the development of the intestinal immune system. In this study, to evaluate the roles of two types of indigenous microbe, segmented filamentous bacteria (SFB) and clostridia, whose habitats are the small and large intestines, respectively, in this immunological development, we analyzed three kinds of gnotobiotic mice contaminated with SFB, clostridia, and both SFB and clostridia, respectively, in comparison with germfree (GF) or conventionalized (Cvd) mice associated with specific-pathogen-free flora. In the small intestine, the number of αβ T-cell receptor-bearing intraepithelial lymphocytes (αβIEL) increased in SFB-associated mice (SFB-mice) but not in clostridium-associated mice (Clost-mice). There was no great difference in Vβ usage among GF mice, Cvd mice, and these gnotobiotic mice, although the association with SFB decreased the proportion of Vβ6+ cells in CD8β− subsets to some extent, compared to that in GF mice. The expression of major histocompatibility complex class II molecules on the epithelial cells was observed in SFB-mice but not in Clost-mice. On the other hand, in the large intestine, the ratio of the number of CD4−CD8+ cells to that of CD4+ CD8−cells in αβIEL increased in Clost-mice but not in SFB-mice. On association with both SFB and clostridia, the numbers and phenotypes of IEL in the small and large intestines changed to become similar to those in Cvd mice. In particular, the ratio of the number of CD8αβ+ cells to that of CD8αα+ cells in αβIEL, unusually elevated in the small intestines of SFB-mice, decreased to the level in Cvd mice on contamination with both SFB and clostridia. The number of immunoglobulin A (IgA)-producing cells in the lamina propria was more elevated in SFB-mice than in Clost-mice, not only in the ileum but also in the colon. The number of IgA-producing cells in the colons of Clost-mice was a little increased compared to that in GF mice. Taken together, SFB and clostridia promoted the development of both IEL and IgA-producing cells in the small intestine and that of only IEL in the large intestine, respectively, suggesting the occurrence of compartmentalization of the immunological responses to the indigenous bacteria between the small and large intestines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristian Doñas ◽  
Jocelyn Neira ◽  
Francisco Osorio-Barrios ◽  
Macarena Carrasco ◽  
Dominique Fernández ◽  
...  

AbstractDendritic cells (DCs) promote T-cell mediated tolerance to self-antigens and induce inflammation to innocuous-antigens. This dual potential makes DCs fundamental players in inflammatory disorders. Evidence from inflammatory colitis mouse models and inflammatory bowel diseases (IBD) patients indicated that gut inflammation in IBD is driven mainly by T-helper-1 (Th1) and Th17 cells, suggesting an essential role for DCs in the development of IBD. Here we show that GSK-J4, a selective inhibitor of the histone demethylase JMJD3/UTX, attenuated inflammatory colitis by reducing the inflammatory potential and increasing the tolerogenic features of DCs. Mechanistic analyses revealed that GSK-J4 increased activating epigenetic signals while reducing repressive marks in the promoter of retinaldehyde dehydrogenase isoforms 1 and 3 in DCs, enhancing the production of retinoic acid. This, in turn, has an impact on regulatory T cells (Treg) increasing their lineage stability and gut tropism as well as potentiating their suppressive activity. Our results open new avenues for the treatment of IBD patients.


Sign in / Sign up

Export Citation Format

Share Document