scholarly journals BCL11B is required for positive selection and survival of double-positive thymocytes

2007 ◽  
Vol 204 (12) ◽  
pp. 3003-3015 ◽  
Author(s):  
Diana I. Albu ◽  
Dongyun Feng ◽  
Debarati Bhattacharya ◽  
Nancy A. Jenkins ◽  
Neal G. Copeland ◽  
...  

Transcriptional control of gene expression in double-positive (DP) thymocytes remains poorly understood. We show that the transcription factor BCL11B plays a critical role in DP thymocytes by controlling positive selection of both CD4 and CD8 lineages. BCL11B-deficient DP thymocytes rearrange T cell receptor (TCR) α; however, they display impaired proximal TCR signaling and attenuated extracellular signal-regulated kinase phosphorylation and calcium flux, which are all required for initiation of positive selection. Further, provision of transgenic TCRs did not improve positive selection of BCL11B-deficient DP thymocytes. BCL11B-deficient DP thymocytes have altered expression of genes with a role in positive selection, TCR signaling, and other signaling pathways intersecting the TCR, which may account for the defect. BCL11B-deficient DP thymocytes also presented increased susceptibility to spontaneous apoptosis associated with high levels of cleaved caspase-3 and an altered balance of proapoptotic/prosurvival factors. This latter susceptibility was manifested even in the absence of TCR signaling and was only partially rescued by provision of the BCL2 transgene, indicating that control of DP thymocyte survival by BCL11B is nonredundant and, at least in part, independent of BCL2 prosurvival factors.

2002 ◽  
Vol 22 (13) ◽  
pp. 4556-4566 ◽  
Author(s):  
Cheng-Tai Yu ◽  
Ming-Hsien Lin Feng ◽  
Hsiu-ming Shih ◽  
Ming-Zong Lai

ABSTRACT Positive selection of T cells is postulated to be dependent on the counterinteraction between glucocorticoid receptor (GR)- and T-cell-receptor (TCR)-induced death signals. In this study we used T-cell-specific expression of p300 to investigate whether GR-TCR cross talk between thymocytes was affected. Activation of the p300-transgenic T cells led to enhanced thymocyte proliferation and increased interleukin 2 production. Thymocyte death, induced by TCR engagement, was no longer prevented by dexamethasone in p300-transgenic mice, indicating an absence of GR-TCR cross-inhibition. This was accompanied by a 50% reduction in the number of thymocytes in p300-transgenic mice. However, the CD4/CD8 profile of thymocytes remained unchanged in p300-transgenic mice. There was no effect on positive selection of the bulk thymocytes or thymocytes with transgenic TCR in p300-transgenic mice. In addition, there was no apparent TCR repertoire “hole” in the selected antigens examined. Our results illustrate a critical role of CBP/p300 in thymic GR-TCR counterinteraction yet do not support the involvement of GR-TCR antagonism in thymocyte positive selection.


2001 ◽  
Vol 31 (6) ◽  
pp. 1867-1875 ◽  
Author(s):  
Myriam Capone ◽  
Myriam Troesch ◽  
Gerard Eberl ◽  
Barbara Hausmann ◽  
Ed Palmer ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4351-4359 ◽  
Author(s):  
Ana C. M. Davalos-Misslitz ◽  
Tim Worbs ◽  
Stefanie Willenzon ◽  
Günter Bernhardt ◽  
Reinhold Förster

The chemokine receptor CCR7 has been implicated in maintenance of thymus morphology and establishment of tolerance to self-antigens. In this study, we provide direct evidence that negative selection of maturing thymocytes is defective in CCR7-deficent mice. Impaired negative selection was observed after TCR/CD3 complex stimulation in vivo as well as in vitro and was prominent in both double-positive and semimature single positive cells (CD4+CD8−CD24high). It is noteworthy that thymocytes of CCR7−/− mice display defective negative selection in response to endogenous superantigens, demonstrating that the defect also occurs under physiological conditions. Disturbed negative selection was correlated with delayed activation kinetics and decreased calcium flux response of CCR7−/− thymocytes after in vitro TCR/CD3 stimulation, suggesting that an impaired response of CCR7−/− thymocytes via TCR-mediated signaling is responsible for defective negative selection in these mice.


2021 ◽  
Vol 22 (8) ◽  
pp. 4236
Author(s):  
Amelia Eva Aránega ◽  
Estefanía Lozano-Velasco ◽  
Lara Rodriguez-Outeiriño ◽  
Felicitas Ramírez de Acuña ◽  
Diego Franco ◽  
...  

microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).


Nature ◽  
1995 ◽  
Vol 374 (6521) ◽  
pp. 474-476 ◽  
Author(s):  
Klaus-Dieter Fischer ◽  
Antanina Zmuidzinas ◽  
Sandra Gardner ◽  
Mariano Barbacid ◽  
Alan Bernstein ◽  
...  

1999 ◽  
Vol 189 (10) ◽  
pp. 1531-1544 ◽  
Author(s):  
Calvin B. Williams ◽  
Deborah L. Engle ◽  
Gilbert J. Kersh ◽  
J. Michael White ◽  
Paul M. Allen

We have developed a unique in vivo system to determine the relationship between endogenous altered peptide ligands and the development of major histocompatibility complex class II– restricted T cells. Our studies use the 3.L2 T cell receptor (TCR) transgenic mouse, in which T cells are specific for Hb(64–76)/I-Ek and positively selected on I-Ek plus self-peptides. To this endogenous peptide repertoire, we have individually added one of six well-characterized 3.L2 ligands. This transgenic approach expands rather than constrains the repertoire of self-peptides. We find that a broad range of ligands produce negative selection of thymocytes in vivo. When compared with the in vitro TCR–ligand binding kinetics, we find that these negatively selecting ligands all have a half-life of 2 s or greater. Additionally, one of two ligands examined with no detectable binding to the 3.L2 TCR and no activity on mature 3.L2 T cells (Q72) enhances the positive selection of transgenic thymocytes in vivo. Together, these data establish a kinetic threshold between negative and positive selection based on the longevity of TCR–ligand complexes.


2006 ◽  
Vol 203 (11) ◽  
pp. 2509-2518 ◽  
Author(s):  
Shen Dong ◽  
Béatrice Corre ◽  
Eliane Foulon ◽  
Evelyne Dufour ◽  
André Veillette ◽  
...  

Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain–containing inositol polyphosphate 5′-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2343-2343
Author(s):  
Liguang Chen ◽  
Bing Cui ◽  
George Chen ◽  
Michelle Salcedo ◽  
Carlo M. Croce ◽  
...  

Abstract Abstract 2343 Poster Board II-320 B-cell receptor (BCR) signaling arguably plays an important role in the pathogenesis and/or progression of chronic lymphocytic leukemia. Ligation of the BCR by F(ab)2 anti-μ can induce phosphorylation of p72Syk, BLNK, phospholipase C-gamma (PLCγ) and other downstream adapter/signaling molecules, inducing intracellular calcium flux and cellular activation. Prior studies found that CLL cells that expressed unmutated Ig heavy-chain variable region genes (IGHV) and the zeta-associated protein of 70 kD (ZAP-70) generally experienced greater levels of activation following treatment with anti-μ than did CLL cells that lacked expression of ZAP-70. However, we found unusual cases that lacked expression of ZAP-70 that also responded vigorously to treatment with anti-μ, suggesting that other factors contribute to the noted differences in BCR-signaling. Analyses for expression of microRNAs by microarray revealed that CLL cells that used unmutated IGHV and that expressed ZAP-70 expressed higher levels of certain microRNAs than did cases that used mutated IGHV and that lacked expression of ZAP-70. One of such microRNA, miR-155, was found to target mRNA encoding SHIP-1, a phosphatase that plays a critical role in modulating the level of BCR signaling in normal B cells. Using quantitative assays for miR-155 we found high-level expression of this microRNA was associated with proficient BCR signaling in CLL. To examine whether miR-155 could modulate the levels of SHIP-1 and/or BCR signaling in CLL cells we transfected primary leukemia cells from each of multiple patients with control oligo-RNAs, miR-155, or a specific inhibitor of miR-155 (miR-155 inhibitor). Twenty-four hours later the cells were stimulated with anti-μ or control antibody and then examined 10 minutes later for expression of SHIP-1, induced calcium influx, or phosphorylation of kinases and adapter proteins that are involved in BCR signaling. CLL cells that had low expression levels of miR-155 and that were poorly responsive BCR had significantly higher levels of calcium influx and phosphorylated p72Syk, BLNK, and PLCγ in response to anti-μ following transfection with miR-155 than following mock transfection or transfection with control oligo-RNA. Conversely, CLL cells that had high expression levels of miR-155 and highly responsive BCR were made to have significantly higher amounts of SHIP-1 protein and to have significantly lower relative levels of phosphorylated protein and calcium influx in response to anti-μ following transfection with the miR-155 inhibitor than did mock transfected CLL cells. These results identify miR-155 as a factor that can modulate BCR signaling in CLL in part by regulating the relative expression level of SHIP-1. These results demonstrate that differential expression of microRNAs in CLL can influence physiologic features that potentially contribute to disease progression. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 199 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Hitoshi Okada ◽  
Chris Bakal ◽  
Arda Shahinian ◽  
Andrew Elia ◽  
Andrew Wakeham ◽  
...  

Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4− CD8− double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre–T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development.


1999 ◽  
Vol 190 (8) ◽  
pp. 1039-1048 ◽  
Author(s):  
Susan Winandy ◽  
Li Wu ◽  
Jin-Hong Wang ◽  
Katia Georgopoulos

T cell differentiation relies on pre–T cell receptor (TCR) and TCR signaling events that take place at successive steps of the pathway. Here, we show that two of these T cell differentiation checkpoints are regulated by Ikaros. In the absence of Ikaros, double negative thymocytes can differentiate to the double positive stage without expression of a pre-TCR complex. Subsequent events in T cell development mediated by TCR involving transition from the double positive to the single positive stage are also regulated by Ikaros. Nonetheless, in Ikaros-deficient thymocytes, the requirement of pre-TCR expression for expansion of immature thymocytes as they progress to the double positive stage is still maintained, and the T cell malignancies that invariably arise in the thymus of Ikaros-deficient mice are dependent on either pre-TCR or TCR signaling. We conclude that Ikaros regulates T cell differentiation, selection, and homeostasis by providing signaling thresholds for pre-TCR and TCR.


Sign in / Sign up

Export Citation Format

Share Document