scholarly journals Requirements of SLP76 tyrosines in ITAM and integrin receptor signaling and in platelet function in vivo

2008 ◽  
Vol 205 (8) ◽  
pp. 1775-1788 ◽  
Author(s):  
Natalie A. Bezman ◽  
Lurong Lian ◽  
Charles S. Abrams ◽  
Lawrence F. Brass ◽  
Mark L. Kahn ◽  
...  

Src homology 2 domain–containing leukocyte phosphoprotein of 76 kD (SLP76), an adaptor that plays a critical role in platelet activation in vitro, contains three N-terminal tyrosine residues that are essential for its function. We demonstrate that mice containing complementary tyrosine to phenylalanine mutations in Y145 (Y145F) and Y112 and Y128 (Y112/128F) differentially regulate integrin and collagen receptor signaling. We show that mutation of Y145 leads to severe impairment of glycoprotein VI (GPVI)–mediated responses while preserving outside-in integrin signaling. Platelets from Y112/128F mice, although having mild defects in GPVI signaling, exhibit defective actin reorganization after GPVI or αIIbβ3 engagement. The in vivo consequences of these signaling defects correlate with the mild protection from thrombosis seen in Y112/128F mice and the near complete protection observed in Y145F mice. Using genetic complementation, we further demonstrate that all three phosphorylatable tyrosines are required within the same SLP76 molecule to support platelet activation by GPVI.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1508-1508 ◽  
Author(s):  
Shawn M. Jobe ◽  
Katina M. Wilson ◽  
Lori Leo ◽  
Jeffery D. Molkentin ◽  
Steven R. Lentz ◽  
...  

Abstract Dual stimulation of platelets with thrombin and collagen results in the formation of a unique subpopulation of highly activated platelets. Characteristics of the highly activated platelet subpopulation includeincreased surface retention of procoagulant alpha granule proteins,high-level phosphatidylserine (PS) externalization, andmodulation of the fibrinogen receptor αIIbβ3 as evidenced by their decreased recognition by antibodies to activated αIIbβ3 such as PAC-1 and JON/A. Formation of the highly activated platelet subpopulation is closely correlated with a rapid loss of mitochondrial transmembrane potential (ΔΨm), a marker of MPTP formation. To test whether formation of the MPTP might regulate the development of the highly activated platelet subpopulation, platelet activation responses were examined in the presence of inhibitors and activators of MPTP formation. Cyclosporine, an inhibitor of MPTP formation, inhibited both PS externalization and αIIbβ3 modulation following dual stimulation with thrombin and the glycoprotein VI agonist convulxin (58 ± 4% vs. 9 ± 3%, p<0.01). Conversely, thrombin stimulation of platelets in the presence of H2O2 (100μM), an MPTP activator, increased PS externalization and αIIbβ3 modulation relative to platelets stimulated with thrombin alone (11 ± 3% vs. 48 ± 6%, p<0.05). Platelet activation responses were examined in cyclophilin D null (CypD −/−) mice, which have marked impairment of MPTP formation. Following dual agonist stimulation with thrombin and convulxin, both αIIbβ3 modulation and platelet PS externalization were significantly abrogated in CypD −/− platelets relative to wild type (7 ± 1% vs. 69 ± 1%, p<0.01). Alpha granule release, however, was unaffected in the absence of CypD. In vitro tests of platelet function similarly demonstrated that CypD −/− platelets had marked impairment of platelet prothrombinase activity relative to wild-type platelets after stimulation with thrombin and convulxin, but normal platelet aggregation responses. We then tested the hypothesis that CypD −/− mice would have an altered thrombotic response to arterial injury. Following photochemical injury of the carotid artery endothelium, a stable occlusive thrombus formed more rapidly in CypD −/− than in wild-type mice (16 ± 2 vs. 32 ± 7 min, p<0.05). Tail-bleeding time was unaffected. These results strongly implicate cyclophilin D and the MPTP as critical regulators of the subset of platelet activation responses occurring in the highly activated platelet subpopulation and suggest that activation of this novel platelet mitochondrial signaling pathway might play an important role in the regulation of the thrombotic response in vivo.


2002 ◽  
Vol 277 (51) ◽  
pp. 50190-50197 ◽  
Author(s):  
Devki Nandan ◽  
Taolin Yi ◽  
Martin Lopez ◽  
Crystal Lai ◽  
Neil E. Reiner

The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genusLeishmania.The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates ofLeishmania donovanipromastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification ofLeishmaniaelongation factor-1α (EF-1α) as a SHP-1-binding protein. PurifiedLeishmaniaEF-1α, but not host cell EF-1α, bound directly to SHP-1in vitroleading to its activation. Three independent lines of evidence indicated thatLeishmaniaEF-1α may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [35S]methionine-labeled organisms containedLeishmaniaEF-1α. Second, confocal, fluorescence microscopy usingLeishmania-specific antisera detectedLeishmaniaEF-1α in the cytosol of infected cells. Third, co-immunoprecipitation showed thatLeishmaniaEF-1α was associated with SHP-1in vivoin infected cells. Finally, introduction of purifiedLeishmaniaEF-1α, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-γ. Thus,LeishmaniaEF-1α is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 485-485
Author(s):  
Firdos Ahmad ◽  
Lucia Stefanini ◽  
Timothy Daniel Ouellette ◽  
Teshell K Greene ◽  
Stefan Feske ◽  
...  

Abstract Abstract 485 Platelet activation is a central event in thrombosis and hemostasis. We recently demonstrated that most aspects of platelet activation depend on synergistic signaling by two signaling modules: 1) Ca2+/CalDAG-GEFI/Rap1 and 2) PKC/P2Y12/Rap1. The intracellular Ca2+ concentration of platelets is regulated by Ca2+ release from the endoplasmic reticulum (ER) and store-operated calcium entry (SOCE) through the plasma membrane. Stromal interaction molecule 1 (STIM1) was recently identified as the ER Ca2+ sensor that couples Ca2+ store release to SOCE. In this study, we compared the activation response of platelets lacking STIM1−/− or CalDAG-GEFI−/−, both in vitro and in vivo. To specifically investigate Ca2+-dependent platelet activation, some of the experiments were performed in the presence of inhibitors to P2Y12. The murine Stim1 gene was deleted in the megakaryocyte/platelet lineage by breeding Stim flox/flox mice with PF4-Cre mice (STIM1fl/fl). STIM1fl/fl platelets showed markedly reduced SOCE in response to agonist stimulation. aIIbβ3 activation in STIM1fl/fl platelets was significantly reduced in the presence but not in the absence of the P2Y12 inhibitor, 2-MesAMP. In contrast, aIIbb3 activation was completely inhibited in 2-MesAMP-treated CalDAG-GEFI−/− platelets. Deficiency in STIM1, and to a lesser extent in CalDAG-GEFI, reduced phosphatidyl serine (PS) exposure in platelets stimulated under static conditions. PS exposure was completely abolished in both STIM1fl/fl and CalDAG-GEFI−/− platelets stimulated in the presence of 2-MesAMP. To test the ability of platelets to form thrombi under conditions of arterial shear stress, we performed flow chamber experiments with anticoagulated blood perfused over a collagen surface. Thrombus formation was abolished in CalDAG-GEFI−/− blood and WT blood treated with 2-MesAMP. In contrast, STIM1fl/fl platelets were indistinguishable from WT platelets in their ability to form thrombi. STIM1fl/fl platelets, however, were impaired in their ability to express PS when adhering to collagen under flow. Consistently, when subjected to a laser injury thrombosis model, STIM1fl/fl mice showed delayed and reduced fibrin generation, resulting in the formation of unstable thrombi. In conclusion, our studies indicate a critical role of STIM1 in SOCE and platelet procoagulant activity, but not in CalDAG-GEFI mediated activation of aIIbb3 integrin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 222-222 ◽  
Author(s):  
Maha Othman ◽  
Andrea Labelle ◽  
Ian Mazzetti ◽  
David Lillicrap

Abstract Acute thrombocytopenia has been consistently reported following IV administration of adenoviral vectors (Ad) but the mechanism responsible for this phenomenon has not been elucidated. Thrombocytopenia appears 24 hours after IV administration of Ad and is vector dose dependent. In this study, we have assessed the potential roles of the adhesive proteins P-selectin and von Willebrand Factor (VWF) on the aggregation and clearance of platelets following virus administration. We have addressed the question of whether the thrombocytopenia is due to a direct effect of the virus on platelets or an indirect effect related to interaction of platelets with other proteins or cells modified by the virus. We assessed platelet count in a group of Balb/c and C57Bl/6 mice over 1 week period following Ad administration and performed a detailed examination of the events within the first 24 h after Ad injection, the period that precedes the appearance of thrombocytopenia. We examined the effect of Ad on expression of the platelet activation marker P-selectin and the formation of platelet leukocyte aggregates (PLA) by means of flowcytometry after incubation of adenovirus with mouse platelets in vitro, and following Ad administration in vivo. To assess the role of VWF in Ad-induced thrombocytopenia we measured plasma VWF levels one hour after injection of Ad. Further investigations involved comparison of platelet counts, platelet activation, and the formation of PLA in a group of VWF KO mice. All studies have been performed with a replication deficient E1/E3-deleted Ad 1x 1011 viral particles/mouse. Our in vitro studies have shown that Ad directly activates mouse platelets as shown by increased expression of P-selectin. The average index of platelet activation for platelets stimulated by Ad was 2519.4 compared to 128.2 for resting platelets (n=5, p<0.02). Flow cytometric analysis of CD41 (platelets) and CD45 (leucocytes) double stained positive events indicated that Ad stimulation induced PLA when compared to the unstimulated samples. Our in vivo studies have confirmed the development of significant thrombocytopenia in both Balb/c as well as C57Bl/6 WT mice (n=8, p=0.00001, n= 6, p=0.002) 24 hours following Ad administration. Significant P-selectin expression was documented in both strains (n=4,p=0.0003; n=3, p=0.0008 respectively) as well as significant PLA one hour following Ad (n=4, p=0.01; n=3, p=0.007). The VWF KO mice showed non-significant thrombocytopenia (n= 6, p=0.063) at 24 hours following Ad, significant P-selectin expression (n=3, p=0.0003), but no significant PLA formation at one hour (n=3 p=0.12) relative to pre-injection levels. Plasma VWF levels were significantly elevated in both Balb/c and C57Bl/6 WT mice one hour following administration of the virus (n= 3, p=0.02; n= 3, p= 0.001). The average plasma VWF levels were 48.1 U/mL at 1h compared to 5.7 U/mL pre injection in Balb /c mice and 85.9 U/mL compared to 6.1 U/mL in C57Bl/6 mice. These studies have shown that Ad can act as an inducer of mouse platelet activation and as a promoter for platelet-leukocyte association both in vitro and in vivo. We have demonstrated a role for Ad in stimulating VWF release from the endothelium, and have shown that VWF has a critical role in platelet activation and clearance following Ad administration. We conclude that P-selectin and VWF proteins are directly involved in interactions between endothelial cells, platelets and leukocytes, a complex interaction that can explain at least in part the mechanisms underlying Ad-mediated thrombocytopenia.


2018 ◽  
Vol 24 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Valeria Ludovici ◽  
Jens Barthelmes ◽  
Matthias P. Nagele ◽  
Andreas J. Flammer ◽  
Isabella Sudano

Background: Coronary artery disease (CAD) is a disease progressing over many years. Genetic factors, as well as the exposure to risk factors, are continuously leading to endothelial dysfunction, vascular alterations and, eventually, organ damage, major cardiovascular events and deaths. Oxidative stress, platelet hyperactivity and low-grade inflammation are important modulators in this context, contributing to plaque formation. Since platelet activation plays a critical role in the development and progression of atherothrombotic events, the inhibition of platelet hyperactivity may contribute to decreased atherothrombotic risk. The consumption of bioactive foods, and plant-derived polyphenols in particular, might impart anti-thrombotic and cardiovascular protective effects. Methods: Aim of this work is to focus on the potential of dietary derived polyphenols to reduce platelet hyperactivity or hypercoagulability in addition to discussing their possible complementary anti-platelet therapeutic potential. All the relevant publications on this topic were systematically reviewed. Results: Various studies demonstrated that polyphenol supplementation affects platelet aggregation and function in vitro and in vivo, mainly neutralizing free radicals, inhibiting platelet activation and related signal transduction pathways, blocking thromboxane A2 receptors and enhancing nitric oxide production. Experimental data concerning the effect of dietary polyphenols on platelet aggregation in vivo are poor, and results are often conflicting. Only flavanols clearly mirrored in vivo showed the efficacy in vitro in modulating platelet function. Conclusion: Dietary polyphenols, and above all flavanols contained in cocoa and berries, reduce platelet activation and aggregation via multiple pathways. However, more controlled interventional studies are required to establish which doses are required as well as what circulating concentrations are sufficient to induce functional antiplatelet effects.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2029-2029
Author(s):  
Andrew Sinnamon ◽  
Peisong Ma ◽  
Lawrence F. Brass

Abstract Abstract 2029 Platelet regulation plays a critical role in hemostasis. Underactivation can result in failure to stop bleeding, whereas inappropriate platelet activation can cause thrombus formation. The 130-kDa scaffold protein spinophilin (SPL) has recently been shown to play a role in preventing platelet overactivation by forming a complex with the proteins RGS10, RGS18, and the tyrosine phosphatase SHP-1. This complex dissociates when platelet are activated by thrombin or thromboxane A2 and evidence from spinophilin knockout mice suggests that this regulates platelet activation in vitro and in vivo. Spinophilin was originally isolated as a binding partner for the serine/threonine phosphatase, PP-1, in neurons. Here we asked whether PP-1 forms a complex with spinophilin in human platelets and, if so, whether the complex is affected by platelet activation. The approaches that we used to answer this question included Western blotting with antibodies to PP-1 and spinophilin, and co-precipitation studies looking for an association between spinophilin and PP-1. The results of the Western blots confirm the presence of PP-1 in platelets. The initial co-precipitation studies show that little, if any, PP-1 is associated with spinophilin in resting platelets, but there is a time-dependent increase in the SPL/PP-1 complex when platelets are activated with the PAR1 (thrombin receptor) activating peptide, SFLLRN. Thus it appears that within approximately the same time frame that the SPL/RGS/SHP-1 complex is decaying in activated platelets, the SPL/PP-1 complex is forming. Targets for PP1 have not been fully identified in platelets, but it is known that spinophilin localizes to the plasma membrane upon platelet activation. Since spinophilin is thought to direct PP1 targeting in neurons, it is reasonable to propose that it may be directing PP1 to targets in platelets in a similar manner. The studies described in this abstract were supported in part by a 2010 ASH Trainee Research Award to Andrew Sinnamon, who is a first year medical student at the University of Pennsylvania. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (4) ◽  
pp. 1268-1277 ◽  
Author(s):  
Kendra L. Sarratt ◽  
Hong Chen ◽  
Mary M. Zutter ◽  
Samuel A. Santoro ◽  
Daniel A. Hammer ◽  
...  

AbstractThe roles of the 2 major platelet-collagen receptors, glycoprotein VI (GPVI) and integrin α2β1, have been intensely investigated using a variety of methods over the past decade. In the present study, we have used pharmacologic and genetic approaches to study human and mouse platelet adhesion to collagen under flow conditions. Our studies demonstrate that both GPVI and integrin α2β1 play significant roles for platelet adhesion to collagen under flow and that the loss of both receptors completely ablates this response. Intracellular signaling mediated by the cytoplasmic adaptor Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) but not by the transmembrane adaptor linker for activation of T cells (LAT) is critical for platelet adhesion to collagen under flow. In addition, reduced GPVI receptor density results in severe defects in platelet adhesion to collagen under flow. Defective adhesion to collagen under flow is associated with prolonged tail-bleeding times in mice lacking one or both collagen receptors. These studies establish platelet-collagen responses under physiologic flow as the consequence of a close partnership between 2 structurally distinct receptors and suggest that both receptors play significant hemostatic roles in vivo.


2016 ◽  
Vol 310 (5) ◽  
pp. C373-C380 ◽  
Author(s):  
Rachel A. Rigg ◽  
Joseph E. Aslan ◽  
Laura D. Healy ◽  
Michael Wallisch ◽  
Marisa L. D. Thierheimer ◽  
...  

The Tec family kinase Bruton's tyrosine kinase (Btk) plays an important signaling role downstream of immunoreceptor tyrosine-based activation motifs in hematopoietic cells. Mutations in Btk are involved in impaired B-cell maturation in X-linked agammaglobulinemia, and Btk has been investigated for its role in platelet activation via activation of the effector protein phospholipase Cγ2 downstream of the platelet membrane glycoprotein VI (GPVI). Because of its role in hematopoietic cell signaling, Btk has become a target in the treatment of chronic lymphocytic leukemia and mantle cell lymphoma; the covalent Btk inhibitor ibrutinib was recently approved by the US Food and Drug Administration for treatment of these conditions. Antihemostatic events have been reported in some patients taking ibrutinib, although the mechanism of these events remains unknown. We sought to determine the effects of Btk inhibition on platelet function in a series of in vitro studies of platelet activation, spreading, and aggregation. Our results show that irreversible inhibition of Btk with two ibrutinib analogs in vitro decreased human platelet activation, phosphorylation of Btk, P-selectin exposure, spreading on fibrinogen, and aggregation under shear flow conditions. Short-term studies of ibrutinib analogs administered in vivo also showed abrogation of platelet aggregation in vitro, but without measurable effects on plasma clotting times or on bleeding in vivo. Taken together, our results suggest that inhibition of Btk significantly decreased GPVI-mediated platelet activation, spreading, and aggregation in vitro; however, prolonged bleeding was not observed in a model of bleeding.


Blood ◽  
2011 ◽  
Vol 117 (16) ◽  
pp. 4253-4261 ◽  
Author(s):  
Gordon Chan ◽  
Laurene S. Cheung ◽  
Wentian Yang ◽  
Michael Milyavsky ◽  
Ashley D. Sanders ◽  
...  

Abstract Src homology 2 domain-containing phosphatase 2 (Shp2), encoded by Ptpn11, is a member of the nonreceptor protein-tyrosine phosphatase family, and functions in cell survival, proliferation, migration, and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs, indicating that Ras is functionally downstream of Shp2 in these cells. Thus, Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.


2015 ◽  
Vol 212 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Ulrike Flierl ◽  
Tracy L. Nero ◽  
Bock Lim ◽  
Jane F. Arthur ◽  
Yu Yao ◽  
...  

Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.


Sign in / Sign up

Export Citation Format

Share Document