scholarly journals Cutaneous immunosurveillance by self-renewing dermal γδ T cells

2011 ◽  
Vol 208 (3) ◽  
pp. 505-518 ◽  
Author(s):  
Nital Sumaria ◽  
Ben Roediger ◽  
Lai Guan Ng ◽  
Jim Qin ◽  
Rachel Pinto ◽  
...  

The presence of γδ T cell receptor (TCR)–expressing cells in the epidermis of mice, termed dendritic epidermal T cells (DETCs), is well established. Because of their strict epidermal localization, it is likely that DETCs primarily respond to epithelial stress, such as infections or the presence of transformed cells, whereas they may not participate directly in dermal immune responses. In this study, we describe a prominent population of resident dermal γδ T cells, which differ from DETCs in TCR usage, phenotype, and migratory behavior. Dermal γδ T cells are radioresistant, cycle in situ, and are partially depend on interleukin (IL)-7, but not IL-15, for their development and survival. During mycobacterial infection, dermal γδ T cells are the predominant dermal cells that produce IL-17. Absence of dermal γδ T cells is associated with decreased expansion in skin draining lymph nodes of CD4+ T cells specific for an immunodominant Mycobacterium tuberculosis epitope. Decreased CD4+ T cell expansion is related to a reduction in neutrophil recruitment to the skin and decreased BCG shuttling to draining lymph nodes. Thus, dermal γδ T cells are an important part of the resident cutaneous immunosurveillance program. Our data demonstrate functional specialization of T cells in distinct microcompartments of the skin.

2015 ◽  
Vol 135 (4) ◽  
pp. 1007-1015 ◽  
Author(s):  
Satoshi Nakamizo ◽  
Gyohei Egawa ◽  
Michio Tomura ◽  
Shunsuke Sakai ◽  
Soken Tsuchiya ◽  
...  

2009 ◽  
Vol 206 (11) ◽  
pp. 2497-2509 ◽  
Author(s):  
Kyrie Felio ◽  
Hanh Nguyen ◽  
Christopher C. Dascher ◽  
Hak-Jong Choi ◽  
Sha Li ◽  
...  

Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines.


2020 ◽  
Vol 8 (1) ◽  
pp. e000649
Author(s):  
Tonke K Raaijmakers ◽  
Renske J E van den Bijgaart ◽  
Martijn H den Brok ◽  
Melissa Wassink ◽  
Annemarie de Graaf ◽  
...  

BackgroundTumor ablation techniques, like cryoablation, are successfully used in the clinic to treat tumors. The tumor debris remaining in situ after ablation is a major antigen depot, including neoantigens, which are presented by dendritic cells (DCs) in the draining lymph nodes to induce tumor-specific CD8+T cells. We have previously shown that co-administration of adjuvants is essential to evoke strong in vivo antitumor immunity and the induction of long-term memory. However, which adjuvants most effectively combine with in situ tumor ablation remains unclear.Methods and resultsHere, we show that simultaneous administration of cytidyl guanosyl (CpG) with saponin-based adjuvants following cryoablation affects multifunctional T-cell numbers and interleukin (IL)-1 induced polymorphonuclear neutrophil recruitment in the tumor draining lymph nodes, relative to either adjuvant alone. The combination of CpG and saponin-based adjuvants induces potent DC maturation (mainly CpG-mediated), antigen cross-presentation (mainly saponin-based adjuvant mediated), while excretion of IL-1β by DCs in vitro depends on the presence of both adjuvants. Most strikingly, CpG/saponin-based adjuvant exposed DCs potentiate antigen-specific T-cell proliferation resulting in multipotent T cells with increased capacity to produce interferon (IFN)γ, IL-2 and tumor necrosis factor-α in vitro. Also in vivo the CpG/saponin-based adjuvant combination plus cryoablation increased the numbers of tumor-specific CD8+T cells showing enhanced IFNγ production as compared with single adjuvant treatments.ConclusionsCollectively, these data indicate that co-injection of CpG with saponin-based adjuvants after cryoablation induces an increased amount of tumor-specific multifunctional T cells. The combination of saponin-based adjuvants with toll-like receptor 9 adjuvant CpG in a cryoablative setting therefore represents a promising in situ vaccination strategy.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 942-949 ◽  
Author(s):  
Kyle K. Payne ◽  
Jessica A. Mine ◽  
Subir Biswas ◽  
Ricardo A. Chaurio ◽  
Alfredo Perales-Puchalt ◽  
...  

Gamma delta (γδ) T cells infiltrate most human tumors, but current immunotherapies fail to exploit their in situ major histocompatibility complex–independent tumoricidal potential. Activation of γδ T cells can be elicited by butyrophilin and butyrophilin-like molecules that are structurally similar to the immunosuppressive B7 family members, yet how they regulate and coordinate αβ and γδ T cell responses remains unknown. Here, we report that the butyrophilin BTN3A1 inhibits tumor-reactive αβ T cell receptor activation by preventing segregation of N-glycosylated CD45 from the immune synapse. Notably, CD277-specific antibodies elicit coordinated restoration of αβ T cell effector activity and BTN2A1-dependent γδ lymphocyte cytotoxicity against BTN3A1+ cancer cells, abrogating malignant progression. Targeting BTN3A1 therefore orchestrates cooperative killing of established tumors by αβ and γδ T cells and may present a treatment strategy for tumors resistant to existing immunotherapies.


Author(s):  
Jens Blobner ◽  
Michael Kilian ◽  
Chin Leng Tan ◽  
Katrin Aslan ◽  
Khwab Sanghvi ◽  
...  

Abstract Background Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T cell responses can be generated. Therefore, we investigated whether glioma-draining lymph nodes (TDLN) may constitute a reservoir of tumor-reactive T cells. Methods We addressed our hypothesis by flow cytometric analyses of chicken ovalbumin (OVA)-specific CD8 + T cells as well as T cell receptor beta (TCRβ) next-generation-sequencing (TCRβ-NGS) of T cells from tumor tissue, TDLN, spleen, and inguinal lymph nodes harvested from experimental mouse GL261 glioma models. Results Longitudinal dextramer-based assessment of specific CD8 + T cells from TDLN did not show tumor model antigen reactivity. Unbiased immunogenomic analysis revealed a low overlap of TCRβ sequences from glioma-infiltrating CD8 + T cells between mice. Enrichment-scores, calculated by the ratio of productive frequencies of the different TCRβ-CDR3 amino-acid (aa) rearrangements of CD8 + T cells derived from tumor, TDLN, inguinal lymph nodes, and spleen demonstrated a higher proportion of tumor-associated TCR in the spleen compared to TDLN. Conclusions In experimental glioblastoma, our data did not provide evidence that glioma-draining cervical lymph nodes are a robust reservoir for spontaneous glioma-specific T cells highlighting the requirement of detailed analyses of glioma-infiltrating T cells for the discovery of tumor-specific TCR.


2005 ◽  
Vol 202 (10) ◽  
pp. 1387-1397 ◽  
Author(s):  
Zhibin Chen ◽  
Ann E. Herman ◽  
Michael Matos ◽  
Diane Mathis ◽  
Christophe Benoist

Foxp3 is required for the generation and activity of CD4+CD25+ regulatory T (T reg) cells, which are important controllers of autoimmunity, including type-1 diabetes. To determine where T reg cells affect the diabetogenic cascade, we crossed the Foxp3 scurfy mutation, which eliminates T reg cells, with the BDC2.5 T cell receptor (TCR) transgenic mouse line. In this model, the absence of T reg cells did not augment the initial activation or phenotypic characteristics of effector T cells in the draining lymph nodes, nor accelerate the onset of T cell infiltration of the pancreatic islets. However, this insulitis was immediately destructive, causing a dramatic progression to overt diabetes. Microarray analysis revealed that T reg cells in the insulitic lesion adopted a gene expression program different from that in lymph nodes, whereas T reg cells in draining or irrelevant lymph nodes appeared very similar. Thus, T reg cells primarily impinge on autoimmune diabetes by reining in destructive T cells inside the islets, more than during the initial activation in the draining lymph nodes.


2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

2021 ◽  
Vol 6 (66) ◽  
Author(s):  
Puspa Thapa ◽  
Rebecca S. Guyer ◽  
Alexander Y. Yang ◽  
Christopher A. Parks ◽  
Todd M. Brusko ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Josephine G. M. Strijker ◽  
Ronja Pscheid ◽  
Esther Drent ◽  
Jessica J. F. van der Hoek ◽  
Bianca Koopmans ◽  
...  

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.


Sign in / Sign up

Export Citation Format

Share Document