scholarly journals BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells

Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 942-949 ◽  
Author(s):  
Kyle K. Payne ◽  
Jessica A. Mine ◽  
Subir Biswas ◽  
Ricardo A. Chaurio ◽  
Alfredo Perales-Puchalt ◽  
...  

Gamma delta (γδ) T cells infiltrate most human tumors, but current immunotherapies fail to exploit their in situ major histocompatibility complex–independent tumoricidal potential. Activation of γδ T cells can be elicited by butyrophilin and butyrophilin-like molecules that are structurally similar to the immunosuppressive B7 family members, yet how they regulate and coordinate αβ and γδ T cell responses remains unknown. Here, we report that the butyrophilin BTN3A1 inhibits tumor-reactive αβ T cell receptor activation by preventing segregation of N-glycosylated CD45 from the immune synapse. Notably, CD277-specific antibodies elicit coordinated restoration of αβ T cell effector activity and BTN2A1-dependent γδ lymphocyte cytotoxicity against BTN3A1+ cancer cells, abrogating malignant progression. Targeting BTN3A1 therefore orchestrates cooperative killing of established tumors by αβ and γδ T cells and may present a treatment strategy for tumors resistant to existing immunotherapies.

2006 ◽  
Vol 203 (4) ◽  
pp. 897-906 ◽  
Author(s):  
Megan MacLeod ◽  
Mark J. Kwakkenbos ◽  
Alison Crawford ◽  
Sheila Brown ◽  
Brigitta Stockinger ◽  
...  

Secondary T cell responses are enhanced because of an expansion in numbers of antigen-specific (memory) cells. Using major histocompatibility complex class II tetramers we have tracked peptide-specific endogenous (non–T cell receptor transgenic) CD4 memory T cells in normal and in costimulation-deficient mice. CD4 memory T cells were detectable after immunization for more than 200 days, although decay was apparent. Memory cells generated in CD40 knockout mice by immunization with peptide-pulsed wild-type dendritic cells survived in the absence of CD40 and proliferated when boosted with peptide (plus adjuvant) in a CD40-independent fashion. However, differentiation of the memory cells into cytokine-producing effector cells did not occur in the absence of CD40. The data indicate that memory cells can be generated without passing through the effector cell stage.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 564-571 ◽  
Author(s):  
Qian Qi ◽  
Mingcan Xia ◽  
Jianfang Hu ◽  
Elizabeth Hicks ◽  
Archana Iyer ◽  
...  

AbstractThe Tec kinase Itk is critical for the development of αβ T cells as well as differentiation of CD4+ T cells into Th2 cells. Itk null mice have defects in the production of Th2 cytokines; however, they paradoxically have significant elevations in serum IgE. Here we show that Itk null mice have increased numbers of γδ T cells in the thymus and spleen. This includes elevated numbers of CD4+ γδ T cell, the majority of which carry the Vγ1.1 and Vδ6.2/3 γδ T-cell receptor with a distinct phenotype. The development of these CD4+ γδ T cells is T cell intrinsic, independent of either major histocompatibility complex class I or class II, and is favored during development in the absence of Itk. Itk null CD4+ γδ T cells secrete significant amounts of Th2 cytokines and can induce the secretion of IgE by wild-type B cells. Our data indicate that Itk plays important role in regulating γδ T-cell development and function. In addition, our data indicate that the elevated IgE observed in Itk-deficient mice is due in part to the enhanced development of CD4+ γδ T cells in the absence of Itk.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1987
Author(s):  
Jessica Tuengel ◽  
Sanya Ranchal ◽  
Alexandra Maslova ◽  
Gurpreet Aulakh ◽  
Maria Papadopoulou ◽  
...  

Gamma-delta (γδ) T cells are unconventional T cells that help control cytomegalovirus (CMV) infection in adults. γδ T cells develop early in gestation, and a fetal public γδ T cell receptor (TCR) clonotype is detected in congenital CMV infections. However, age-dependent γδ T cell responses to primary CMV infection are not well-understood. Flow cytometry and TCR sequencing was used to comprehensively characterize γδ T cell responses to CMV infection in a cohort of 32 infants followed prospectively from birth. Peripheral blood γδ T cell frequencies increased during infancy, and were higher among CMV-infected infants relative to uninfected. Clustering analyses revealed associations between CMV infection and activation marker expression on adaptive-like Vδ1 and Vδ3, but not innate-like Vγ9Vδ2 γδ T cell subsets. Frequencies of NKG2C+CD57+ γδ T cells were temporally associated with the quantity of CMV shed in saliva by infants with primary infection. The public γδ TCR clonotype was only detected in CMV-infected infants <120 days old and at lower frequencies than previously described in fetal infections. Our findings support the notion that CMV infection drives age-dependent expansions of specific γδ T cell populations, and provide insight for novel strategies to prevent CMV transmission and disease.


2015 ◽  
Vol 113 (2) ◽  
pp. 386-391 ◽  
Author(s):  
Omar I. Vivar ◽  
Giulia Masi ◽  
Jean-Marie Carpier ◽  
Joao G. Magalhaes ◽  
Donatella Galgano ◽  
...  

Biogenesis of the immune synapse at the interface between antigen-presenting cells and T cells assembles and organizes a large number of membrane proteins required for effective signaling through the T-cell receptor. We showed previously that the intraflagellar transport protein 20 (IFT20), a component of the intraflagellar transport system, controls polarized traffic during immune synapse assembly. To investigate the role of IFT20 in primary CD4+ T cells in vitro and in vivo, we generated mice bearing a conditional defect of IFT20 expression in T cells. We show that in the absence of IFT20, although cell spreading and the polarization of the centrosome were unaffected, T-cell receptor (TCR)-mediated signaling and recruitment of the signaling adaptor LAT (linker for activation of T cells) at the immune synapse were reduced. As a consequence, CD4+ T-cell activation and proliferation were also defective. In vivo, conditional IFT20-deficient mice failed to mount effective antigen-specific T-cell responses, and their T cells failed to induce colitis after adoptive transfer to Rag−/− mice. IFT20 is therefore required for the delivery of the intracellular pool of LAT to the immune synapse in naive primary T lymphocytes and for effective T-cell responses in vivo.


2011 ◽  
Vol 208 (3) ◽  
pp. 505-518 ◽  
Author(s):  
Nital Sumaria ◽  
Ben Roediger ◽  
Lai Guan Ng ◽  
Jim Qin ◽  
Rachel Pinto ◽  
...  

The presence of γδ T cell receptor (TCR)–expressing cells in the epidermis of mice, termed dendritic epidermal T cells (DETCs), is well established. Because of their strict epidermal localization, it is likely that DETCs primarily respond to epithelial stress, such as infections or the presence of transformed cells, whereas they may not participate directly in dermal immune responses. In this study, we describe a prominent population of resident dermal γδ T cells, which differ from DETCs in TCR usage, phenotype, and migratory behavior. Dermal γδ T cells are radioresistant, cycle in situ, and are partially depend on interleukin (IL)-7, but not IL-15, for their development and survival. During mycobacterial infection, dermal γδ T cells are the predominant dermal cells that produce IL-17. Absence of dermal γδ T cells is associated with decreased expansion in skin draining lymph nodes of CD4+ T cells specific for an immunodominant Mycobacterium tuberculosis epitope. Decreased CD4+ T cell expansion is related to a reduction in neutrophil recruitment to the skin and decreased BCG shuttling to draining lymph nodes. Thus, dermal γδ T cells are an important part of the resident cutaneous immunosurveillance program. Our data demonstrate functional specialization of T cells in distinct microcompartments of the skin.


2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


2021 ◽  
Vol 14 (687) ◽  
pp. eaba0717
Author(s):  
Shunsuke Kataoka ◽  
Priyanka Manandhar ◽  
Judong Lee ◽  
Creg J. Workman ◽  
Hridesh Banerjee ◽  
...  

Expression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic activation, including during chronic infection and in solid tumors. Thus, Tim-3 is generally thought of as an inhibitory protein. We and others previously reported that under some circumstances, Tim-3 exerts paradoxical costimulatory activity in T cells (and other cells), including enhancement of the phosphorylation of ribosomal S6 protein. Here, we examined the upstream signaling pathways that control Tim-3–mediated increases in phosphorylated S6 in T cells. We also defined the localization of Tim-3 relative to the T cell immune synapse and its effects on downstream signaling. Recruitment of Tim-3 to the immune synapse was mediated exclusively by the transmembrane domain, replacement of which impaired the ability of Tim-3 to costimulate T cell receptor (TCR)–dependent S6 phosphorylation. Furthermore, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in a chimeric antigen receptor still enabled T cell activation. Together, our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.


1983 ◽  
Vol 158 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
P Marrack ◽  
R Endres ◽  
R Shimonkevitz ◽  
A Zlotnik ◽  
D Dialynas ◽  
...  

We have examined the role of the murine homologue of Leu-3 T4, L3T4, in recognition of antigen in association with products of the major histocompatibility complex (Ag/MHC) by murine T cell hybridomas. A series of ovalbumin (OVA)/I-Ad-specific T cell hybridomas were ranked in their sensitivity to Ag/I by measuring their ability to respond to low doses of OVA, or their sensitivity to inhibition by anti-I-Ad antibodies. T cell hybridomas with low apparent avidity for OVA/I-Ad, i.e. that did not respond well to low concentrations of OVA and were easily inhibited by anti-I-Ad, were also easily inhibited by anti-L3T4 antibodies. The reverse was true for T cell hybridomas with apparent high avidity for Ag/MHC. We found that the presence of low doses of anti-L3T4 antibodies caused T cell hybridomas to respond less well to low doses of Ag, and to be more easily inhibited by anti-I-Ad antibodies. These results suggested that the role of the L3T4 molecule is to increase the overall avidity of the reaction between T cells and Ag-presenting cells. In support of this idea was the discovery of several L3T4- subclones of one of our L3T4+ T cell hybridomas, D0.11.10. The L3T4- subclones had the same amount of receptor for OVA/I-Ad as their L3T4+ parent, as detected by an anti-receptor monoclonal antibody. The L3T4- subclones, however, responded less well to low doses of OVA, and were more easily inhibited by anti-I-Ad antibodies than their L3T4/ parent. These results showed that the L3T4 molecule was not required for surface expression of, or functional activity of, the T cell receptor for Ag/MHC. The L3T4 molecule did, however, increase the sensitivity with which the T cell reacted with Ag/MHC on Ag-presenting cells.


Sign in / Sign up

Export Citation Format

Share Document