scholarly journals Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome

2011 ◽  
Vol 208 (13) ◽  
pp. 2607-2613 ◽  
Author(s):  
Takeshi Ouchi ◽  
Akiharu Kubo ◽  
Mariko Yokouchi ◽  
Takeya Adachi ◽  
Tetsuro Kobayashi ◽  
...  

Epidermal Langerhans cells (LCs) extend dendrites through tight junctions (TJs) to survey the skin surface, but their immunological contribution in vivo remains elusive. We show that LCs were essential for inducing IgG1 responses to patch-immunized ovalbumin in mice that lacked skin dendritic cell subsets. The significance of LC-induced humoral responses was demonstrated in a mouse model of staphylococcal scalded skin syndrome (SSSS), a severe blistering disease in which the desmosomal protein Dsg1 (desmoglein1) is cleaved by Staphylococcus aureus–derived exfoliative toxin (ET). Importantly, ET did not penetrate TJs, and patch immunization did not alter epidermal integrity. Nevertheless, neutralizing anti-ET IgG1 was induced after patch immunization and abolished upon LC depletion, indicating that antigen capture through TJs by LCs induced humoral immunity. Strikingly, the ET-patched mice were protected from developing SSSS after intraperitoneal ET challenge, whereas LC-depleted mice were susceptible to SSSS, demonstrating a vital role for LC-induced IgG1 in systemic defense against circulating toxin in vivo. Therefore, LCs elicit humoral immunity to antigens that have not yet violated the epidermal barrier, providing preemptive immunity against potentially pathogenic skin microbes. Targeting this immunological process confers protection with minimal invasiveness and should have a marked impact on future strategies for development of percutaneous vaccines.

1993 ◽  
Vol 178 (5) ◽  
pp. 1567-1575 ◽  
Author(s):  
T M Foy ◽  
D M Shepherd ◽  
F H Durie ◽  
A Aruffo ◽  
J A Ledbetter ◽  
...  

The ligand for CD40 has been recently identified as a 39-kd protein, gp39, expressed on the surface of activated CD4+ T helper cells (Th). In vitro, soluble CD40 and anti-gp39 have been shown to block the ability of Th to activate B cells, suggesting that gp39-CD40 interactions are important to T cell-dependent B cell activation. Here it is shown that in vivo administration of anti-gp39 dramatically reduced both primary and secondary humoral immune responses to erythrocytes and soluble protein antigens without altering responses to the T-independent type II antigen, trinitrophenyl-Ficoll. Treatment of mice for 4 d with anti-gp39 inhibited the anti-sheep red blood cell (SRBC) response for at least 3 wk and inhibited the expression of all immunoglobulin isotypes in secondary responses to the protein antigen, keyhole limpet hemocyanin. To examine the direct effect of anti-gp39 on Th function, SRBC-immune Th cells from anti-gp39-treated mice were adoptively transferred and shown to be fully capable of providing help. These results suggest that anti-gp39 treatment does not cause Th deletion or anergy. Anti-gp39 may mediate its profound immunosuppressive effects on humoral immunity by blocking gp39-CD40 interactions. Moreover, these studies establish gp39-CD40 as an important receptor-ligand pair for the targeting of therapeutic antibodies to control thymus-dependent humoral responses.


1995 ◽  
Vol 57 (1) ◽  
pp. 52-54 ◽  
Author(s):  
Takako GOTO ◽  
Takahiro GYOTOKU ◽  
Shuhei IMAYAMA ◽  
Yoshiaki HORI
Keyword(s):  

2020 ◽  
Vol 21 (4) ◽  
pp. 316-324
Author(s):  
Manica Negahdaripour ◽  
Navid Nezafat ◽  
Reza Heidari ◽  
Nasrollah Erfani ◽  
Nasim Hajighahramani ◽  
...  

Background: L2-based Human Papillomavirus (HPV) prophylactic vaccines, containing epitopes from HPV minor capsid proteins, are under investigation as second-generation HPV vaccines. No such vaccine has passed clinical trials yet, mainly due to the low immunogenicity of peptide vaccines; so efforts are being continued. A candidate vaccine composed of two HPV16 L2 epitopes, flagellin and a Toll-Like Receptor (TLR) 4 agonist (RS09) as adjuvants, and two universal T-helper epitopes was designed in silico in our previous researches. Methods: The designed vaccine construct was expressed in E. coli BL21 (DE3) and purified through metal affinity chromatography. Following mice vaccination, blood samples underwent ELISA and flow cytometry analyses for the detection of IgG and seven Th1 and Th2 cytokines. Results: Following immunization, Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-10) type cytokines, as well as IgG, were induced significantly compared with the PBS group. Significant increases in IFN-γ, IL-2, and IL-5 levels were observed in the vaccinated group versus Freund’s adjuvant group. Conclusion: The obtained cytokine induction profile implied both cellular and humoral responses, with a more Th-1 favored trend. However, an analysis of specific antibodies against L2 is required to confirm humoral responses. No significant elevation in inflammatory cytokines, (IL-6 and TNF-α), suggested a lack of unwanted inflammatory side effects despite using a combination of two TLR agonists. The designed construct might be capable of inducing adaptive and innate immunity; nevertheless, comprehensive immune tests were not conducted at this stage and will be a matter of future work.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dawei Chen ◽  
Zhenguo Zhao ◽  
Lu Chen ◽  
Qinghua Li ◽  
Jixue Zou ◽  
...  

AbstractEmerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 298
Author(s):  
Daniele Focosi ◽  
Angelo Genoni ◽  
Ersilia Lucenteforte ◽  
Silvia Tillati ◽  
Antonio Tamborini ◽  
...  

Antibody-dependent enhancement (ADE) of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) infection has been hypothesized. However, to date, there has been no in vitro or in vivo evidence supporting this. Cross-reactivity exists between SARS CoV-2 and other Coronaviridae for both cellular and humoral immunity. We show here that IgG against nucleocapsid protein of alphacoronavirus NL63 and 229E correlate with the World Health Organization’s (WHO) clinical severity score ≥ 5 (incidence rate ratios was 1.87 and 1.80, respectively, and 1.94 for the combination). These laboratory findings suggest possible ADE of SARS CoV-2 infection by previous alphacoronavirus immunity.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Zhu ◽  
Hercules Rezende Freitas ◽  
Izumi Maezawa ◽  
Lee-way Jin ◽  
Vivek J. Srinivasan

AbstractIn vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utilizes the water absorption window around 1700 nm, where ballistic attenuation in the brain is minimized. Key issues, including detector noise, excess light source noise, chromatic dispersion, and the resolution-speckle tradeoff, are analyzed and optimized. Imaging through a thinned-skull preparation that preserves intracranial space, we present volumetric imaging of cytoarchitecture and myeloarchitecture across the entire depth of the mouse neocortex, and some sub-cortical regions. In an Alzheimer’s disease model, we report that findings in superficial and deep cortical layers diverge, highlighting the importance of deep optical biopsy. Compared to other microscopic techniques, our 1700 nm OCM approach achieves a unique combination of intrinsic contrast, minimal invasiveness, and high resolution for deep brain imaging.


2004 ◽  
Vol 10 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Ute Jacobi ◽  
Mai Chen ◽  
Gottfried Frankowski ◽  
Ronald Sinkgraven ◽  
Martina Hund ◽  
...  

2011 ◽  
Vol 79 (4) ◽  
pp. 1660-1670 ◽  
Author(s):  
Fuminori Kato ◽  
Noriko Kadomoto ◽  
Yuko Iwamoto ◽  
Katsuaki Bunai ◽  
Hitoshi Komatsuzawa ◽  
...  

ABSTRACTThe exfoliative toxin (ET) is a major virulence factor ofStaphylococcus aureusthat causes bullous impetigo and its disseminated form, staphylococcal scalded-skin syndrome (SSSS). ET selectively digests one of the intracellular adhesion molecules, desmoglein 1, of epidermal keratinocytes and causes blisters due to intraepidermal cell-cell dissociation. MostS. aureusstrains that cause blistering disease produce either ETA or ETB. They are serologically distinct molecules, where ETA is encoded on a phage genome and ETB is enocded on a large plasmid. ETA-producingS. aureusstrains are frequently isolated from impetigo patients, and ETB-producingS. aureusstrains are isolated from SSSS. ET-induced blister formation can be reproduced with the neonatal mouse. To determine the regulatory mechanism of ET production, we investigated the role of the two-component systems and global regulators foretaoretbexpressionin vitroandin vivowith the mouse model. Western blot and transcription analyses using a series of mutants demonstrate ETA production was downregulated bysigB,sarS, andsarA, while ETB production was downregulated bysigBandsarAbut not bysarS. Production of both toxins is upregulated bysaeRS,arlRS, andagrCA. Furthermore, by thein vivoneonatal mouse model,sigBandsarSbut notsarAnegatively regulate the exfoliation activity of the ETA-producing strain, whilesarAnegatively regulates the ETB-producing strain. In both strains,saeRS,arlRS, andagrCApositively regulate the exfoliation activityin vivo. The data illustrate similar but distinct regulatory mechanisms for ETA and ETB productionin S. aureus in vitroas well asin vivo.


Sign in / Sign up

Export Citation Format

Share Document