scholarly journals Human marginal zone B cell development from early T2 progenitors

2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Thomas J. Tull ◽  
Michael J. Pitcher ◽  
William Guesdon ◽  
Jacqueline H.Y. Siu ◽  
Cristina Lebrero-Fernández ◽  
...  

B cells emerge from the bone marrow as transitional (TS) B cells that differentiate through T1, T2, and T3 stages to become naive B cells. We have identified a bifurcation of human B cell maturation from the T1 stage forming IgMhi and IgMlo developmental trajectories. IgMhi T2 cells have higher expression of α4β7 integrin and lower expression of IL-4 receptor (IL4R) compared with the IgMlo branch and are selectively recruited into gut-associated lymphoid tissue. IgMhi T2 cells also share transcriptomic features with marginal zone B cells (MZBs). Lineage progression from T1 cells to MZBs via an IgMhi trajectory is identified by pseudotime analysis of scRNA-sequencing data. Reduced frequency of IgMhi gut-homing T2 cells is observed in severe SLE and is associated with reduction of MZBs and their putative IgMhi precursors. The collapse of the gut-associated MZB maturational axis in severe SLE affirms its existence in health.

2020 ◽  
Author(s):  
Thomas J. Tull ◽  
Michael J. Pitcher ◽  
William Guesdon ◽  
Jacqueline H. Siu ◽  
Cristina Lebrero-Fernández ◽  
...  

AbstractB cells emerge from the bone marrow as transitional (TS) B cells that differentiate through T1, T2 and T3 stages to become naïve B cells. We have identified a bifurcation of human B cell maturation from the T1 stage forming IgMhi and IgMlo developmental trajectories. IgMhi T2 cells have higher expression of α4β7 integrin and lower expression of IL4 receptor (IL4R) compared to the IgMlo branch and are selectively recruited into gut-associated lymphoid tissue. IgMhi T2 cells also share transcriptomic features with marginal zone B cells (MZB). Lineage progression from T1 cells to MZB via an IgMhi trajectory is identified by pseudotime analysis of scRNA-sequencing data. Reduced frequency of IgMhi gut homing T2 cells is observed in severe SLE and is associated with reduction of MZB and their putative IgMhi precursors. The collapse of the gut-associated MZB maturational axis in severe SLE affirms its existence and importance for maintaining health.


2009 ◽  
Vol 417 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Munetoyo Toda ◽  
Risa Hisano ◽  
Hajime Yurugi ◽  
Kaoru Akita ◽  
Kouji Maruyama ◽  
...  

CD22 [Siglec-2 (sialic acid-binding, immunoglobulin-like lectin-2)], a negative regulator of B-cell signalling, binds to α2,6- sialic acid-linked glycoconjugates, including a sialyl-Tn antigen that is one of the typical tumour-associated carbohydrate antigens expressed on various mucins. Many epithelial tumours secrete mucins into tissues and/or the bloodstream. Mouse mammary adenocarcinoma cells, TA3-Ha, produce a mucin named epiglycanin, but a subline of them, TA3-St, does not. Epiglycanin binds to CD22 and inhibits B-cell signalling in vitro. The in vivo effect of mucins in the tumour-bearing state was investigated using these cell lines. It should be noted that splenic MZ (marginal zone) B-cells were dramatically reduced in the mice bearing TA3-Ha cells but not in those bearing TA3-St cells, this being consistent with the finding that the thymus-independent response was reduced in these mice. When the mucins were administered to normal mice, a portion of them was detected in the splenic MZ associated with the MZ B-cells. Furthermore, administration of mucins to normal mice clearly reduced the splenic MZ B-cells, similar to tumour-bearing mice. These results indicate that mucins in the bloodstream interacted with CD22, which led to impairment of the splenic MZ B-cells in the tumour-bearing state.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Maria Cristina de Vera Mudry ◽  
Franziska Regenass-Lechner ◽  
Laurence Ozmen ◽  
Bernd Altmann ◽  
Matthias Festag ◽  
...  

Theγ-secretase complex is a promising target in Alzheimer’s disease because of its role in the amyloidogenic processing ofβ-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oralγ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2391-2398 ◽  
Author(s):  
Elena Vigorito ◽  
Laure Gambardella ◽  
Francesco Colucci ◽  
Simon McAdam ◽  
Martin Turner

AbstractMice lacking all 3 Vav proteins fail to produce significant numbers of recirculating follicular or marginal zone B cells. Those B cells that do mature have shortened lifespans. The constitutive nuclear factor-kappaB (NF-κB) activity of resting naive B cells required Vav function and expression of cellular reticuloendotheliosis (c-Rel). Rel-A was reduced in Vav-deficient B cells. Furthermore, expression of the NF-κB-regulated antiapoptotic genes A1 and Bcl-2 was reduced in mature Vav-deficient B cells. Overexpression of Bcl-2 restored the number of mature follicular B cells in the spleens of Vav-deficient mice. When activated by B-cell receptor (BCR) cross-linking, Vav-deficient B cells failed to activate NF-κB. Vav proteins thus regulate an NF-κB-dependent survival signal in naive B cells and are required for NF-κB function after BCR cross-linking.


Blood ◽  
2021 ◽  
Author(s):  
Patricia E Zerra ◽  
Seema R Patel ◽  
Ryan Philip Jajosky ◽  
Connie M Arthur ◽  
James W McCoy ◽  
...  

Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme and ovalbumin fused to human Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they co-localize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited IgM and IgG anti-HOD antibody formation, while CD4 T cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild type or MZ B cell deficient recipients, suggesting that IgG formation is not dependent on MZ B cell-mediated CD4 T cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response and no increase in antigen specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.


2005 ◽  
Vol 202 (9) ◽  
pp. 1225-1234 ◽  
Author(s):  
Bhaskar Srivastava ◽  
William J. Quinn ◽  
Kristin Hazard ◽  
Jan Erikson ◽  
David Allman

Selection of recently formed B cells into the follicular or marginal zone (MZ) compartments is proposed to occur by way of proliferative intermediates expressing high levels of CD21/35 and CD23. However, we show that CD21/35high CD23+ splenocytes are not enriched for proliferative cells, and do not contribute substantially to the generation of follicular B cells. Instead, ontogenic relationships, steady-state labeling kinetics, and adoptive transfer experiments suggest that CD21/35high CD23+ splenocytes serve primarily as precursors for MZ B cells, although their developmental potential seems to be broader and is influenced by environmental cues that are associated with lymphopenia. Furthermore, CD21/35high CD23+ splenocytes share several key functional characteristics with MZ B cells, including their capacity to trap T-independent antigen and a heightened proliferative response to LPS. These observations challenge previous models of peripheral B cell maturation, and suggest that MZ B cells develop by way of CD21/35high CD23+ intermediates.


Antibodies ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 50
Author(s):  
Kim Doyon-Laliberté ◽  
Josiane Chagnon-Choquet ◽  
Michelle Byrns ◽  
Matheus Aranguren ◽  
Meriam Memmi ◽  
...  

We have previously characterized a human blood CD19+CD1c+IgM+CD27+CD21loCD10+ innate-like B-cell population, which presents features shared by both transitional immature and marginal zone (MZ) B-cells, named herein “precursor-like” MZ B-cells. B-cells with similar attributes have been associated with regulatory potential (Breg). In order to clarify this issue and better characterize this population, we have proceeded to RNA-Seq transcriptome profiling of mature MZ and precursor-like MZ B-cells taken from the blood of healthy donors. We report that ex vivo mature MZ and precursor-like MZ B-cells express transcripts for the immunoregulatory marker CD83 and nuclear receptors NR4A1, 2, and 3, known to be associated with T-cell regulatory (Treg) maintenance and function. Breg associated markers such as CD39 and CD73 were also expressed by both populations. We also show that human blood and tonsillar precursor-like MZ B-cells were the main B-cell population to express elevated levels of CD83 and NR4A1-3 proteins ex vivo and without stimulation. Sorted tonsillar precursor-like MZ B-cells exerted regulatory activity on autologous activated CD4+ T-cells, and this was affected by a CD83 blocking reagent. We believe these observations shed light on the Breg potential of MZ populations, and identify NR4A1-3 as potential Breg markers, which as for Tregs, may be involved in stabilization of a regulatory status. Since expression and activity of these molecules can be modulated therapeutically, our findings may be useful in strategies aiming at modulation of Breg responses.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 162-162 ◽  
Author(s):  
Alexandra Traverse-Glehen ◽  
Aurelie Verney ◽  
Lucille Baseggio ◽  
Pascale Felman ◽  
Evelyne Callet-Bauchu ◽  
...  

Abstract Background and Objectives Splenic and nodal marginal zone B cell lymphoma (SMZL and NMZL) have been recently identified as distinct clinicopathological entities in the WHO classification. These lymphomas entities may have a common origin in the marginal B-cell compartment of the lymphoid organs. However the precise cell of origin of marginal zone B cells, its status in the B cell differentiation pathway and the mechanisms involved in lymphomagenesis remain unclear. The most widely held view is that marginal zone B cells are mostly memory B cells. But the origin of these cells, especially the transit through germinal center pathway, remains contradictory. Somatically mutated variable-region of immunoglobulin genes and bcl-6 gene represent at this time faithful markers for exposure to the germinal center. In addition, aberrant somatic hypermutations have been suggested to contribute to the development of B-cell lymphomas, occurring in the 5′ sequence of several proto-oncogenes. Interestingly those mutation do not occur in normal germinal center B cells. Design and Methods: IgVH, BCL-6, PIM1, Rho/TTF and PAX 5 genes, highly mutated in DLBCL and other indolent lymphoma such as B-CLL, were analysed for the presence of somatic mutations from 50 marginal zone lymphoma tissue and blood samples (21 NMZL and 29 SMZL including 10 cases with numerous villous lymphoma cells in peripheral blood). According to the morphological and immunophenotypical analysis, the fraction of malignant cells in the specimen was 70% or more in all cases. Mutational analysis was restricted to the regions previously shown to contain more than 95% of mutations in DLBCL. PCR products were directly sequenced on both sides and perfomed in duplicate in two independent reactions. Results: Out of 18 NMZL cases analysed for IgVH mutational status (3 cases not analysed for IgVH) 15 cases were mutated and 21 out of 28 in SMZL cases. Mutation of BCL-6 was detected in only 1 NMZL patients (1/21) and 1 SMZL patients (1/29). For RhoH/TTF, PIM1, PAX5 the mutation average was also low with only 1 case mutated per group and per gene, with a different case mutated in each for each gene. Conclusion In summary, we demonstrate the low frequency of aberrant somatic mutations in SMZL and NMZL, suggesting that this process is probably not a major contributor to lymphomageneis. However the frequent absence of mutation in BCL6 suggest a particular differentiation pathway, as suggested before in normal marginal zone B cells, possibly without transit through the germinal center. Interestingly the relatively high frequency of VH mutated cases compared with the frequent absence of mutation of BCL6, considered as a specific germinal center tag, could suggest somatic hypermutation outside the germinal center. In addition the absence of hypermutation could be linked with the absence of recurrent translocation in SMZL and NMZL, the translocation process haveing been associated with somatic hypermutation dysfunction.


Sign in / Sign up

Export Citation Format

Share Document