scholarly journals OXIDASE REACTION OF VARIOUS GROUPS OF BACTERIA

1923 ◽  
Vol 38 (3) ◽  
pp. 291-307
Author(s):  
Lloyd D. Felton

1. A simple technique is described for studying the oxidase action of bacteria by means of the oxidation of p-aminoleucomalachite green. 2. It is shown that pneumococci under aerobic conditions produced an oxidase when grown on suitable medium. The sera of any of seven different animal species constitute such a medium, the degree of oxidation by the pneumococcus depending upon the animal from which the serum was taken—rat, guinea pig, rabbit, horse, man, cat, and chicken in order of diminishing suitability. 3. Conditions favoring the oxidation of p-aminoleucomalachite green by a single strain of pneumococci are: the presence of a slight amount of hemoglobin, dextrose, H ion concentration on the add side, and heating of fresh serum for 30 minutes at 56°C. Conditions preventing the oxidation are: sterilized meat infusion, 1 per cent peptone, plain broth, a high concentration of hemoglobin, and absence of oxygen. In a quantitative fashion, meat infusion, 1 per cent peptone, and plain broth interfere with the suitability of serum as a substratum of oxidase production by the pneumococcus. 4. Twenty-three microbic species were studied with reference to oxidative power. They were grown upon 10 per cent horse serum, with and without dextrose, upon 10 per cent guinea pig serum, and upon plain broth. Only three of the twenty-three gave evidence of oxidative power as tested by p-aminoleucomalachite green; namely, the pneumococcus, Streptococcus viridans, and Streptococcus hæmolyticus. Among the strains, of these three pneumococci gave the most intense reaction, after which Streptococcus viridans and Streptococcus hæmolyticus follow in the order named, but with a noticeable variation among the different strains of Streptococcus hæmolyticus. 5. Hemolytic streptococci of human and bovine origin were studied. The only variation in the type of reaction was manifested by the streptococci of milk and cheese origin. Strains from these sources showed definitely the least oxidase activity. Streptococci from mastitis and cow's udder were indistinguishable by the test from the hemolytic streptococci of human origin.

1972 ◽  
Vol 20 (12) ◽  
pp. 1006-1023 ◽  
Author(s):  
ALEX B. NOVIKOFF ◽  
PHYLLIS M. NOVIKOFF ◽  
CLEVELAND DAVIS ◽  
NELSON QUINTANA

A modification of the Novikoff-Goldfischer alkaline 3,3'-diaminobenzidine medium for visualizing peroxisomes is described. It makes possible light microscopic as well as electron microscopic studies of a recently described class of peroxisomes, the microperoxisomes. Potassium cyanide (5 x 10–3 M) is included in the medium to inhibit mitochondrial staining, the pH is 9.7 and there is a high concentration of H2O2 (0.05%). Two cell types have been chosen to illustrate the advantages of the new procedure for demonstrating the microperoxisomes: the absorptive cells in the human jejunum and the distal tubule cells in the guinea pig kidney. Suggestive relations of microperoxisomes and lipid are described in the human jejunum. The microperoxisomes are strategically located between smooth endoplasmic reticulum that radiates toward the organelles and contains lipid droplets and "central domains" of highly specialized endoplasmic reticulum which do not show the lipid droplets. The microperoxisomes are also present at the periphery of large lipid-like drops. In the guinea pig kidney tubule there is a striking difference between the thick limb of Henle and distal tubule. The distal tubule has a population of cells with large numbers of microperoxisomes readily visible by light microscopy; these cells are not present in the thick limb of Henle. Other differences between the two are also described.


2000 ◽  
Vol 78 (5) ◽  
pp. 378-391 ◽  
Author(s):  
G V Obrocea ◽  
M E Morris

Ion-selective microelectrode recordings were made to assess a possible contribution of extracellular γ-aminobutyric acid (GABA) accumulation to early responses evoked in the brain by anoxia and ischemia. Changes evoked by GABA or N2 in [K+]o, [Cl-]o, [Na+]o, and [TMA+]o were recorded in the cell body and dendritic regions of the stratum pyramidale (SP) and stratum radiatum (SR), respectively, of pyramidal neurons in CA1 of guinea pig hippocampal slices. Bath application of GABA (1-10 mM) for approximately 5 min evoked changes in [K+]o and [Cl-]o with respective EC50 levels of 3.8 and 4.1 mM in SP, and 4.7 and 5.6 mM in SR. In SP 5 mM GABA reversibly increased [K+]o and [Cl-]o and decreased [Na+]o; replacement of 95% O2 -5% CO2 by 95% N2 -5% CO2 for a similar period of time evoked changes which were for each ion in the same direction as those with GABA. In SR both GABA and N2 caused increases in [K+]o and decreases in [Cl-]o and [Na+]o. The reduction of extracellular space, estimated from levels of [TMA+]o during exposures to GABA and N2, was 5-6% and insufficient to cause the observed changes in ion concentration. Ion changes induced by GABA and N2 were reversibly attenuated by the GABAA receptor antagonist bicuculline methiodide (BMI, 100 µM). GABA-evoked changes in [K+]o in SP and SR and [Cl-]o in SP were depressed by >=90%, and of [Cl-]o in SR by 50%; N2-evoked changes in [K+]o in SP and SR were decreased by 70% and those of [Cl-]o by 50%. BMI blocked Δ [Na+]o with both GABA and N2 by 20-30%. It is concluded that during early anoxia: (i) accumulation of GABA and activation of GABAA receptors may contribute to the ion changes and play a significant role, and (ii) responses in the dendritic (SR) regions are greater than and (or) differ from those in the somal (SP) layers. A large component of the [K+]o increase may involve a GABA-evoked Ca2+-activated gk, secondary to [Ca2+]i increase. A major part of [Cl-]o changes may arise from GABA-induced gCl and glial efflux, with strong stimulation of active outward transport and anion exchange at SP, and inward Na+/K+/2Cl- co-transport at SR. Na+ influx is attributable mainly to Na+-dependent transmitter uptake, with only a small amount related to GABAA receptor activation. Although the release and (or) accumulation of GABA during anoxia might be viewed as potentially protectant, the ultimate role may more likely be an important contribution to toxicity and delayed neuronal death. Key words: brain slices, ion-selective microelectrodes, stratum pyramidale, stratum radiatum, bicuculline methiodide, extracellular space shrinkage.


2013 ◽  
Vol 773 ◽  
pp. 283-288
Author(s):  
Xing Zou ◽  
Xiang Quan Chen ◽  
Hai Chao Xie ◽  
Xiao Dan Qiu

The manganese sulfate solution leached from low-grade pyrolusite with pyrite and H2SO4 contains heavy metal ions of high concentration, influencing the quality of the final products of manganese compounds and causing manganese ions not to be electrolyzed. The present study was focused on the separation of Co, Ni and Zn ions from the leached solution with BaS. By controlling the pH value at 5.0-6.5, temperature at 50-60°C, reaction time at 15 min and mixing velocity at 78 rpm, the heavy metal ions could be separated effectively. Under the above optimized conditions, the ion concentration of Co, Ni, and Zn in the solution was reduced to 0.06 mg.L-1, 0.27mg.L-1 and 0.01mg.L-1, and the separation efficiency was 99.72%, 99.18% and 99.9% respectively. The obtained pure solution meets the demands of manganese electrowinning.


2021 ◽  
Author(s):  
Grigory Artemiev ◽  
Alexey Safonov ◽  
Nadezhda Popova

<p>Uranium migration in the oxidized environment of near-surface groundwater is a typical problem of many radiochemical, ore mining and ore processing enterprises that have sludge storage facilities on their territory. Uranium migration, as a rule, occurs against a high salt background due to the composition of the sludge: primarily, nitrate and sulfate anions and calcium cations. One of the ways to prevent the uranium pollution is geochemical or engineering barriers. For uranium immobilization, it is necessary to create conditions for its reduction to a slightly soluble form of uraninite and further mineralization, for example, in the phosphate form. An important factor contributing to the rapid reduction of uranium is a in the redox potential decreasing and the removal of nitrate ions, which can be achieved through the activation of microflora. It should be added that phosphate itself is one of the essential elements for the development of microflora. This work was carried out in relation to the upper aquifer (7-12 m) near the sludge storage facilities of ChMZ, which is engaged in uranium processing and enrichment. One of the problems of this aquifer, in addition to the high concentration of nitrate ions (up to 15 g / l), is the high velocity of formation waters.<br>In laboratory conditions, the compositions of injection solutions were selected containing sources of organic matter to stimulate the microbiota development and phosphates for uranium mineralization. When developing the injection composition, special attention was paid to assessing the formation of calcite deposits in aquifer conditions to partially reduce the filtration parameters of the horizon and reduce the rate of movement of formation waters. This must be achieved to ensure the possibility of long-term deposition of uranium and removal of nitrate. The composition of the optimal solution was selected and in a series of model experiments the mineral phases containing the lowest hydrated form of the uranium-containing phosphate mineral meta-otenite were obtained.<br>In situ mineral phosphate barrier Formation field tests were carried out in water horizon conditions in a volume of 100m3 by injection of an organic and phosphates mixture. As a result, at the first stage of field work, a significant decreasing nitrate ion concentration, and reducing conditions formation coupled with the dissolved uranium concentration of decreasing were noted.</p>


1987 ◽  
Vol 33 (3) ◽  
pp. 221-225 ◽  
Author(s):  
Kunio Komiyama ◽  
Brian F. Habbick ◽  
Tom Martin ◽  
Satwant K. Tumber

Oral and sputum isolates of Pseudomonas aeruginosa in patients with cystic fibrosis were investigated. Of the 17 patients studied, 12 patients (71%) yielded both mucoid and nonmucoid variants of Pseudomonas aeruginosa from sputum and (or) various oral ecological sites, such as buccal mucosa, tongue dorsum, dental plaques, and saliva. A total of 51 strains of mucoid and nonmucoid Pseudomonas aeruginosa were isolated from these patients and were phenotypically characterized by both pyocine typing and serotyping. Five patients (42%) were colonized or infected by a single strain of Pseudomonas aeruginosa, whereas 7 patients (58%) were cocolonized or coinfected by two or more phenotypically different strains of Pseudomonas aeruginosa. To understand the mechanisms involved in Pseudomonas aeruginosa colonization, it may be necessary to identify multiple isolates of Pseudomonas aeruginosa not only from the sputum but also from the various oral ecological sites and to further explore the role of the oral cavity in this colonization.


1971 ◽  
Vol 69 (3) ◽  
pp. 361-368 ◽  
Author(s):  
D. H. Roberts

SUMMARYWhen fresh animal serum was dropped onto seeded mycoplasma agar plates, inhibition of growth frequently occurred. This effect was dependent on the mycoplasma serotype and on the animal species from which the fresh serum came. This activity of fresh animal serum was heat-labile and would not diffuse through the agar medium. Growth of all the porcine mycoplasma serotypes was inhibited by fresh sheep serum.M. hyorhinis, M. hyopneumoniae, B 3 and the P 45 strains were insensitive to fresh horse serum. The addition of fresh horse serum to specificM. hyorhinisrabbit antiserum-impregnated disks appeared to have a synergistic effect and the combination ofM. hyorhinisantiserum-impregnated disk and fresh horse serum always inhibited the growth ofM. hyorhinisstrains.


2004 ◽  
Vol 70 (8) ◽  
pp. 4635-4641 ◽  
Author(s):  
E. Rosberg-Cody ◽  
R. P. Ross ◽  
S. Hussey ◽  
C. A. Ryan ◽  
B. P. Murphy ◽  
...  

ABSTRACT This study was designed to isolate different strains of the genus Bifidobacterium from the fecal material of neonates and to assess their ability to produce the cis-9, trans-11 conjugated linoleic acid (CLA) isomer from free linoleic acid. Fecal material was collected from 24 neonates aged between 3 days and 2 months in a neonatal unit (Erinville Hospital, Cork, Ireland). A total of 46 isolates from six neonates were confirmed to be Bifidobacterium species based on a combination of the fructose-6-phosphate phosphoketolase assay, RAPD [random(ly) amplified polymorphic DNA] PCR, pulsed-field gel electrophoresis (PFGE), and partial 16S ribosomal DNA sequencing. Interestingly, only 1 of the 11 neonates that had received antibiotic treatment produced bifidobacteria. PFGE after genomic digestion with the restriction enzyme XbaI demonstrated that the bifidobacteria population displayed considerable genomic diversity among the neonates, with each containing between one and five dominant strains, whereas 11 different macro restriction patterns were obtained. In only one case did a single strain appear in two neonates. All genetically distinct strains were then screened for CLA production after 72 h of incubation with 0.5 mg of free linoleic acid ml−1 by using gas-liquid chromatography. The most efficient producers belonged to the species Bifidobacterium breve, of which two different strains converted 29 and 27% of the free linoleic acid to the cis-9, trans-11 isomer per microgram of dry cells, respectively. In addition, a strain of Bifidobacterium bifidum showed a conversion rate of 18%/μg dry cells. The ability of some Bifidobacterium strains to produce CLA could be another human health-promoting property linked to members of the genus, given that this metabolite has demonstrated anticarcinogenic activity in vitro and in vivo.


1958 ◽  
Vol 36 (3) ◽  
pp. 347-362 ◽  
Author(s):  
E. Riklis ◽  
J. H. Quastel

The rate of absorption of glucose from isolated surviving guinea pig intestine increases with increase of the concentration of glucose in the lumen until a maximum rate is obtained. The relation between absorption rate of glucose and initial glucose concentration conforms to an equation of the Michaelis–Menten type. The apparent Km(half saturation concentration) is 7 × 10−3M. Increase of the concentration of potassium ions in the Ringer–bicarbonate solution bathing the intestine leads to an increase of the rate of glucose absorption, this being most marked with 15.6 meq./liter K+and 14 mM glucose. No such stimulating action of potassium ions is observed on glucose absorption under anaerobic conditions. The effect of increased potassium ion concentration is to accelerate the rate of transport found with low concentrations of glucose to the maximum value found with high concentrations of the sugar. Sodium ions must be present for glucose absorption to take place and omission of magnesium ions from a Ringer–bicarbonate solution, containing 15.6 meq./liter K+, brings about a decreased rate of active glucose transport. Magnesium ions are necessary for the stimulated rate of glucose absorption obtained in the presence of potassium ions. The presence of ammonium ions decreases the rate of glucose absorption. Potassium ions may be effectively replaced by rubidium ions for stimulation of glucose transport. Cesium ions do not activate. The proportion of glucose to fructose appearing in the serosal solution, when fructose is absorbed from the mucosal solution, depends on the concentration of fructose present. The proportion may be as high as 9:1 with low (7 mM) fructose concentrations; it decreases with increasing fructose concentrations. The active transport of fructose, as demonstrated by the conversion of fructose in the isolated surviving guinea pig intestine, is enhanced by the presence of potassium ions (15.6 meq./liter). The rate of transport of fructose itself is unaffected by potassium. Using radioactive glucose and fructose, it is shown that the total amount of sugar transferred through the intestine as estimated by the radioactivity appearing in the serosal solution is approximately that calculated from chemical analyses. Potassium ions have no activating action on the transport of sugars such as sorbose, mannose, and D-glucosamine, but have a marked effect on galactose transport. The results support the conclusion that potassium ions do not influence active transport of glucose, fructose, and galactose by a change of intestinal permeability to these sugars, but do so by affecting a specific phase involved in the mechanism of active transport of sugars. The presence of L-glutamine stimulates active transport of glucose, whereas that of L-glutamate tends to diminish it.


Sign in / Sign up

Export Citation Format

Share Document