scholarly journals STUDIES ON YELLOW FEVER IN SOUTH AMERICA

1929 ◽  
Vol 50 (6) ◽  
pp. 803-808 ◽  
Author(s):  
Nelson C. Davis ◽  
Raymond C. Shannon

1. Yellow fever virus has been transmitted from monkey to monkey both by the bites of Aëdes (Ochlerotatus) scapularis which had fed upon monkeys infected with yellow fever and by the injection of the ground up bodies of such mosquitoes. 2. A fatal infection has been obtained by the injection of the ground up bodies of Aëdes (Ochlerotatus) serratus, which had previously fed on an infected monkey, and a mild infection has been secured by the similar injection of Aëdes (Taeniorhynchus) taeniorhynchus. 3. No definite infection has been secured either by the bites or by the injection of Culex quinquefasciatus (C. fatigans). However, some of the experimental animals bitten by this species have been relatively immune following inoculations of blood or tissues containing virus.

2018 ◽  
Vol 64 (6) ◽  
pp. 498-500 ◽  
Author(s):  
Michelle Larissa Zini Lise ◽  
Michael Laurence Zini Lise

SUMMARY The Yellow Fever virus was isolated in 1927 and the disease is considered endemic and epidemic in tropical regions of South America and Africa, with thousands of new cases reported annually. Several side effects of the vaccine have already been reported. Although reports of skin rash secondary to the vaccine range from 0 to 15%, no image or detailed description of the lesions were found in the literature. Here we describe a rash on a toddler vaccinated to travel.


Author(s):  
Raphaëlle Klitting ◽  
Carlo Fischer ◽  
Jan F. Drexler ◽  
Ernest A. Gould ◽  
David Roiz ◽  
...  

As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas of low vaccination coverage but suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization’s initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately, viral dissemination and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more YF cases in the upcoming years hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of the two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 425 ◽  
Author(s):  
Raphaëlle Klitting ◽  
Carlo Fischer ◽  
Jan Drexler ◽  
Ernest Gould ◽  
David Roiz ◽  
...  

As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization’s initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arran Hamlet ◽  
Daniel Garkauskas Ramos ◽  
Katy A. M. Gaythorpe ◽  
Alessandro Pecego Martins Romano ◽  
Tini Garske ◽  
...  

AbstractYellow fever virus (YFV) is a zoonotic arbovirus affecting both humans and non-human primates (NHP’s) in Africa and South America. Previous descriptions of YF’s seasonality have relied purely on climatic explanations, despite the high proportion of cases occurring in people involved in agriculture. We use a series of random forest classification models to predict the monthly occurrence of YF in humans and NHP’s across Brazil, by fitting four classes of covariates related to the seasonality of climate and agriculture (planting and harvesting), crop output and host demography. We find that models captured seasonal YF reporting in humans and NHPs when they considered seasonality of agriculture rather than climate, particularly for monthly aggregated reports. These findings illustrate the seasonality of exposure, through agriculture, as a component of zoonotic spillover. Additionally, by highlighting crop types and anthropogenic seasonality, these results could directly identify areas at highest risk of zoonotic spillover.


2021 ◽  
Author(s):  
Denise Haslwanter ◽  
Gorka Lasso ◽  
Anna Z Wec ◽  
Nathalia Dias Furtado ◽  
Lidiane Menezes Souza Raphael ◽  
...  

The resurgence of yellow fever in South America has prompted mitigation through vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a virulent African isolate, and their capacity to induce neutralizing antibodies against the vaccine strain is widely used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. Here, we show that antiviral potency of the polyclonal antibody response in both U.S. and Brazilian vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to genetic changes at two sites in the central domain II of the glycoprotein E, including the acquisition of an N linked glycosylation site, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for designing updated vaccines.


2021 ◽  
Vol 6 ◽  
pp. 664-677
Author(s):  
Tara Sadeghieh ◽  
Jan M. Sargeant ◽  
Amy L. Greer ◽  
Olaf Berke ◽  
Guillaume Dueymes ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1475
Author(s):  
Moussa Moïse Diagne ◽  
Marie Henriette Dior Ndione ◽  
Alioune Gaye ◽  
Mamadou Aliou Barry ◽  
Diawo Diallo ◽  
...  

Yellow fever virus remains a major threat in low resource countries in South America and Africa despite the existence of an effective vaccine. In Senegal and particularly in the eastern part of the country, periodic sylvatic circulation has been demonstrated with varying degrees of impact on populations in perpetual renewal. We report an outbreak that occurred from October 2020 to February 2021 in eastern Senegal, notified and managed through the synergistic effort yellow fever national surveillance implemented by the Senegalese Ministry of Health in collaboration with the World Health Organization, the countrywide 4S network set up by the Ministry of Health, the Institut Pasteur de Dakar, and the surveillance of arboviruses and hemorrhagic fever viruses in human and vector populations implemented since mid 2020 in eastern Senegal. Virological analyses highlighted the implication of sylvatic mosquito species in virus transmission. Genomic analysis showed a close relationship between the circulating strain in eastern Senegal, 2020, and another one from the West African lineage previously detected and sequenced two years ago from an unvaccinated Dutch traveler who visited the Gambia and Senegal before developing signs after returning to Europe. Moreover, genome analysis identified a 6-nucleotide deletion in the variable domain of the 3′UTR with potential impact on the biology of the viral strain that merits further investigations. Integrated surveillance of yellow fever virus but also of other arboviruses of public health interest is crucial in an ecosystem such as eastern Senegal.


1929 ◽  
Vol 92 (7) ◽  
pp. 550 ◽  
Author(s):  
HENRIQUE DE BEAUREPAIRE ARAGÃO

Sign in / Sign up

Export Citation Format

Share Document