scholarly journals Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications.

1992 ◽  
Vol 100 (4) ◽  
pp. 623-645 ◽  
Author(s):  
D S Duch ◽  
A Hernandez ◽  
S R Levinson ◽  
B W Urban

To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90:375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94:813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized: (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained: unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 252:8669-8676).

1987 ◽  
Vol 90 (3) ◽  
pp. 375-395 ◽  
Author(s):  
E Recio-Pinto ◽  
D S Duch ◽  
S R Levinson ◽  
B W Urban

Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations, batrachotoxin (BTX) induced long-lived single-channel currents (25 pS at 500 mM NaCl) that showed voltage-dependent activation and were blocked by TTX. This block was also voltage dependent, with negative potentials increasing block. The permeability ratios were 4.7 for Na+:K+ and 1.6 for Na+:Li+. The midpoint for steady state activation occurred around -70 mV and did not shift significantly when the NaCl concentration was increased from 50 to 1,000 mM. Veratridine-induced single-channel currents were about half the size of those activated by BTX. Unpurified, nonsolubilized sodium channels from E. electricus membrane fragments were also incorporated into planar bilayers. There were no detectable differences in the characteristics of unpurified and purified sodium channels, although membrane stability was considerably higher when purified material was used. Thus, in the eel, the large, 260-kD polypeptide alone is sufficient to demonstrate single-channel activity like that observed for mammalian sodium channel preparations in which smaller subunits have been found.


2003 ◽  
Vol 122 (1) ◽  
pp. 63-79 ◽  
Author(s):  
Kwokyin Hui ◽  
Deane McIntyre ◽  
Robert J. French

We examined the block of voltage-dependent rat skeletal muscle sodium channels by derivatives of μ-conotoxin GIIIA (μCTX) having either histidine, glutamate, or alanine residues substituted for arginine-13. Toxin binding and dissociation were observed as current fluctuations from single, batrachotoxin-treated sodium channels in planar lipid bilayers. R13X derivatives of μCTX only partially block the single-channel current, enabling us to directly monitor properties of both μCTX-bound and -unbound states under different conditions. The fractional residual current through the bound channel changes with pH according to a single-site titration curve for toxin derivatives R13E and R13H, reflecting the effect of changing the charge on residue 13, in the bound state. Experiments with R13A provided a control reflecting the effects of titration of all residues on toxin and channel other than toxin residue 13. The apparent pKs for the titration of residual conductance are shifted 2–3 pH units positive from the nominal pK values for histidine and glutamate, respectively, and from the values for these specific residues, determined in the toxin molecule in free solution by NMR measurements. Toxin affinity also changes dramatically as a function of pH, almost entirely due to changes in the association rate constant, kon. Interpreted electrostatically, our results suggest that, even in the presence of the bound cationic toxin, the channel vestibule strongly favors cation entry with an equivalent local electrostatic potential more negative than −100 mV at the level of the “outer charged ring” formed by channel residues E403, E758, D1241, and D1532. Association rates are apparently limited at a transition state where the pK of toxin residue 13 is closer to the solution value than in the bound state. The action of these unique peptides can thus be used to sense the local environment in the ligand-–receptor complex during individual molecular transitions and defined conformational states.


1987 ◽  
Vol 89 (6) ◽  
pp. 873-903 ◽  
Author(s):  
W N Green ◽  
L B Weiss ◽  
O S Andersen

The guanidinium toxin-induced inhibition of the current through voltage-dependent sodium channels was examined for batrachotoxin-modified channels incorporated into planar lipid bilayers that carry no net charge. To ascertain whether a net negative charge exists in the vicinity of the toxin-binding site, we studied the channel closures induced by tetrodotoxin (TTX) and saxitoxin (STX) over a wide range of [Na+]. These toxins carry charges of +1 and +2, respectively. The frequency and duration of the toxin-induced closures are voltage dependent. The voltage dependence was similar for STX and TTX, independent of [Na+], which indicates that the binding site is located superficially at the extracellular surface of the sodium channel. The toxin dissociation constant, KD, and the rate constant for the toxin-induced closures, kc, varied as a function of [Na+]. The Na+ dependence was larger for STX than for TTX. Similarly, the addition of tetraethylammonium (TEA+) or Zn++ increased KD and decreased kc more for STX than for TTX. These differential effects are interpreted to arise from changes in the electrostatic potential near the toxin-binding site. The charges giving rise to this potential must reside on the channel since the bilayers had no net charge. The Na+ dependence of the ratios KDSTX/KDTTX and kcSTX/kcTTX was used to estimate an apparent charge density near the toxin-binding site of about -0.33 e X nm-2. Zn++ causes a voltage-dependent block of the single-channel current, as if Zn++ bound at a site within the permeation path, thereby blocking Na+ movement. There was no measurable interaction between Zn++ at its blocking site and STX or TTX at their binding site, which suggests that the toxin-binding site is separate from the channel entrance. The separation between the toxin-binding site and the Zn++ blocking site was estimated to be at least 1.5 nm. A model for toxin-induced channel closures is proposed, based on conformational changes in the channel subsequent to toxin binding.


1994 ◽  
Vol 5 (1) ◽  
pp. 97-103 ◽  
Author(s):  
I Bezprozvanny ◽  
S Bezprozvannaya ◽  
B E Ehrlich

Effects of the xanthine drug caffeine on inositol (1,4,5)-trisphosphate (InsP3)-gated calcium (Ca) channels from canine cerebellum were studied using single channels incorporated into planar lipid bilayers. Caffeine, used widely as an agonist of ryanodine receptors, inhibited the activity of InsP3-gated Ca channels in a noncooperative fashion with half-inhibition at 1.64 mM caffeine. The frequency of channel openings was decreased more than threefold after addition of 5 mM caffeine; there was only a small effect on mean open time of the channels, and the single channel conductance was unchanged. Increased InsP3 concentration overcame the inhibitory action of caffeine, but caffeine did not reduce specific [3H]InsP3 binding to the receptor. The inhibitory action of caffeine on InsP3 receptors suggests that the action of caffeine on the intracellular Ca pool must be interpreted with caution when both ryanodine receptors and InsP3 receptors are present in the cell.


1994 ◽  
Vol 71 (6) ◽  
pp. 2570-2575 ◽  
Author(s):  
L. S. Premkumar ◽  
P. W. Gage

1. Single-channel currents were recorded in cell-attached patches on cultured hippocampal neurons in response to gamma-aminobutyric acid-B (GABAB) agonists or serotonin applied to the cell surface outside the patch area. 2. The channels activated by GABAB agonists and serotonin were potassium selective but had a different conductance and kinetic behavior. Channels activated by GABAB agonists had a higher conductance, longer open-time, and longer burst-length than channels activated by serotonin. 3. The kinetic behavior of channels activated by GABAB agonists varied with potential whereas channels activated by serotonin did not show voltage-dependent changes in kinetics. 4. In a few cell-attached patches, both types of channel were activated when the cell was exposed to GABA together with serotonin. 5. It was concluded that GABAB agonists and serotonin activate different potassium channels in the soma of cultured hippocampal neurons.


1995 ◽  
Vol 106 (4) ◽  
pp. 641-658 ◽  
Author(s):  
M E O'Leary ◽  
L Q Chen ◽  
R G Kallen ◽  
R Horn

A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.


1994 ◽  
Vol 266 (2) ◽  
pp. C391-C396 ◽  
Author(s):  
R. Bull ◽  
J. J. Marengo

The effect of halothane on calcium channels present in sarcoplasmic reticulum membranes isolated from frog skeletal muscle was studied at the single channel level after fusing the isolated vesicles into planar lipid bilayers. Addition of 91 microM halothane to the cytosolic compartment containing 1 microM free calcium activated the channel by increasing fractional open time from 0.11 to 0.59, without changing the channel conductance. The activation of the channels by halothane was calcium dependent. At resting calcium concentrations in the cytosolic compartment, halothane failed to activate the channel, whereas maximal activation was found at 10 microM calcium. The free energy of halothane binding to the channel decreased from -5.8 kcal/mol at 1 microM calcium to -6.6 kcal/mol at 10 microM calcium. Halothane increased the open time constants and decreased the closed time constants, indicating that it binds to both the open and the closed configurations of the channel.


1991 ◽  
Vol 261 (4) ◽  
pp. C583-C590 ◽  
Author(s):  
G. E. Kirsch ◽  
M. Taglialatela ◽  
A. M. Brown

Tetraethylammonium (TEA) has been used recently to probe natural and mutational variants of voltage-dependent K+ channels encoded by cDNA clones. Its usefulness as a probe of channel structure prompted us to examine the molecular mechanism by which TEA blocks single-channel currents in Xenopus oocytes expressing the rat brain K+ channel, RCK2. TEA at the intracellular surface of membrane patches decreased channel open time and increased the duration of closed intervals. Tetrapentylammonium had similar but more potent effects. Extracellular application of TEA caused an apparent reduction of single-channel amplitude. Block was slower at the high-affinity internal site than at the low-affinity external site. Internal TEA selectively blocks open K+ channels, and the voltage dependence of the block indicates that the binding site lies within the membrane electric field at a point 25% of the distance from the cytoplasmic margin. External TEA also interacts with the open channel but is less sensitive to membrane potential. The results indicate that the internal and external TEA binding sites define the inner and outer margins of the aqueous pore.


2006 ◽  
Vol 127 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Ping Zhang ◽  
Fred J. Sigworth ◽  
Cecilia M. Canessa

The acid-sensitive ion channels (ASICs) are a family of voltage-insensitive sodium channels activated by external protons. A previous study proposed that the mechanism underlying activation of ASIC consists of the removal of a Ca2+ ion from the channel pore (Immke and McCleskey, 2003). In this work we have revisited this issue by examining single channel recordings of ASIC1 from toadfish (fASIC1). We demonstrate that increases in the concentration of external protons or decreases in the concentration of external Ca2+ activate fASIC1 by progressively opening more channels and by increasing the rate of channel opening. Both maneuvers produced similar effects in channel kinetics, consistent with the former notion that protons displace a Ca2+ ion from a high-affinity binding site. However, we did not observe any of the predictions expected from the release of an open-channel blocker: decrease in the amplitude of the unitary currents, shortening of the mean open time, or a constant delay for the first opening when the concentration of external Ca2+ was decreased. Together, the results favor changes in allosteric conformations rather than unblocking of the pore as the mechanism gating fASIC1. At high concentrations, Ca2+ has an additional effect that consists of voltage-dependent decrease in the amplitude of unitary currents (EC50 of 10 mM at −60 mV and pH 6.0). This phenomenon is consistent with voltage-dependent block of the pore but it occurs at concentrations much higher than those required for gating.


1987 ◽  
Vol 65 (4) ◽  
pp. 568-573 ◽  
Author(s):  
C. L. Schauf

Time- and voltage-dependent behavior of the Na+ conductance in dialyzed intact Myxicola axons was compared with cut-open axons subjected to loose-patch clamp of the interior and to axons where Gigaseals were formed after brief enzyme digestion. Voltage and time dependence of activation, inactivation, and reactivation were identical in whole-axons and loose-patch preparations. Single channels observed in patch-clamp axons had a conductance of 18.3 ± 2.3 pS and a mean open time of 0.84 ± 0.12 ms. The time-dependence of Na+ currents found by averaging patch-clamp records was similar to intact axons, as was the voltage dependence of activation. Steady-state inactivation in patch-clamped axons was shifted by an average of 15 mV from that seen in loose-patch or intact axons. Substitution of D2O for H2O decreased single channel conductance by 24 ± 6% in patch-clamped axons compared with 28 ± 4% in intact axons, slowed inactivation by 58 ± 8% compared with 49 ± 6%, and increased mean open time by 52 ± 7%. The results confirm observations on macroscopic channel behavior in Myxicola and resemble that seen in other excitable tissues.


Sign in / Sign up

Export Citation Format

Share Document