scholarly journals Novel Regulation of Calcium Inhibition of the Inositol 1,4,5-trisphosphate Receptor Calcium-release Channel

2003 ◽  
Vol 122 (5) ◽  
pp. 569-581 ◽  
Author(s):  
Don-On Daniel Mak ◽  
Sean M.J. McBride ◽  
Nataliya B. Petrenko ◽  
J. Kevin Foskett

The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R), a Ca2+-release channel localized to the endoplasmic reticulum, plays a critical role in generating complex cytoplasmic Ca2+ signals in many cell types. Three InsP3R isoforms are expressed in different subcellular locations, at variable relative levels with heteromultimer formation in different cell types. A proposed reason for this diversity of InsP3R expression is that the isoforms are differentially inhibited by high cytoplasmic free Ca2+ concentrations ([Ca2+]i), possibly due to their different interactions with calmodulin. Here, we have investigated the possible roles of calmodulin and bath [Ca2+] in mediating high [Ca2+]i inhibition of InsP3R gating by studying single endogenous type 1 InsP3R channels through patch clamp electrophysiology of the outer membrane of isolated Xenopus oocyte nuclei. Neither high concentrations of a calmodulin antagonist nor overexpression of a dominant-negative Ca2+-insensitive mutant calmodulin affected inhibition of gating by high [Ca2+]i. However, a novel, calmodulin-independent regulation of [Ca2+]i inhibition of gating was revealed: whereas channels recorded from nuclei kept in the regular bathing solution with [Ca2+] ∼400 nM were inhibited by 290 μM [Ca2+]i, exposure of the isolated nuclei to a bath solution with ultra-low [Ca2+] (<5 nM, for ∼300 s) before the patch-clamp experiments reversibly relieved Ca2+ inhibition, with channel activities observed in [Ca2+]i up to 1.5 mM. Although InsP3 activates gating by relieving high [Ca2+]i inhibition, it was nevertheless still required to activate channels that lacked high [Ca2+]i inhibition. Our observations suggest that high [Ca2+]i inhibition of InsP3R channel gating is not regulated by calmodulin, whereas it can be disrupted by environmental conditions experienced by the channel, raising the possibility that presence or absence of high [Ca2+]i inhibition may not be an immutable property of different InsP3R isoforms. Furthermore, these observations support an allosteric model in which Ca2+ inhibition of the InsP3R is mediated by two Ca2+ binding sites, only one of which is sensitive to InsP3.

2005 ◽  
Vol 280 (16) ◽  
pp. 15912-15920 ◽  
Author(s):  
Dan J. Bare ◽  
Claudia S. Kettlun ◽  
Mei Liang ◽  
Donald M. Bers ◽  
Gregory A. Mignery

The type 2 inositol 1,4,5-trisphosphate receptor (InsP3R2) was identified previously as the predominant isoform in cardiac ventricular myocytes. Here we reported the subcellular localization of InsP3R2 to the cardiomyocyte nuclear envelope (NE). The other major known endo/sarcoplasmic reticulum calcium-release channel (ryanodine receptor) was not localized to the NE, indicating functional segregation of these channels and possibly a unique role for InsP3R2 in regulating nuclear calcium dynamics. Immunoprecipitation experiments revealed that the NE InsP3R2 associates with Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), the major isoform expressed in cardiac myocytes. Recombinant InsP3R2 and CaMKIIδBalso co-immunoprecipitated after co-expression in COS-1 cells. Additionally, the amino-terminal 1078 amino acids of the InsP3R2 were sufficient for interaction with CaMKIIδBand associated upon mixing following separate expression. CaMKII can also phosphorylate InsP3R2, as demonstrated by32P labeling. Incorporation of CaMKII-treated InsP3R2 into planar lipid bilayers revealed that InsP3-mediated channel open probability is significantly reduced (∼11 times) by phosphorylation via CaMKII. We concluded that the InsP3R2 and CaMKIIδ likely represent two central components of a multiprotein signaling complex, and this raises the possibility that calcium release via InsP3R2 in the myocyte NE may activate local CaMKII signaling, which may feedback on InsP3R2 function.


1997 ◽  
Vol 17 (6) ◽  
pp. 3005-3012 ◽  
Author(s):  
T Jayaraman ◽  
A R Marks

The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) calcium release channel is present on the endoplasmic reticulum of most cell types. T lymphocytes which have been made deficient in IP3R1 lack detectable IP3-induced intracellular calcium release and exhibit defective signaling via the T-cell receptor (TCR) (T. Jayaraman, E. Ondriasova, K. Ondrias, D. Harnick, and A. R. Marks, Proc. Natl. Acad. Sci. USA 92:6007-6011, 1995). We now show that IP3R1-deficient T cells are resistant to apoptosis induced by dexamethasone, TCR stimulation, ionizing radiation, and Fas. Resistance to TCR-mediated apoptosis in IP3R1-deficient cells is reversed by pharmacologically raising cytoplasmic calcium levels. TCR-mediated apoptosis can be induced in calcium-free media, indicating that extracellular calcium influx is not required. These findings suggest that intracellular calcium release via the IP3R1 is a critical mediator of apoptosis.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Yvonne Sleiman ◽  
Alain Lacampagne ◽  
Albano C. Meli

AbstractThe regulation of intracellular calcium (Ca2+) homeostasis is fundamental to maintain normal functions in many cell types. The ryanodine receptor (RyR), the largest intracellular calcium release channel located on the sarco/endoplasmic reticulum (SR/ER), plays a key role in the intracellular Ca2+ handling. Abnormal type 2 ryanodine receptor (RyR2) function, associated to mutations (ryanopathies) or pathological remodeling, has been reported, not only in cardiac diseases, but also in neuronal and pancreatic disorders. While animal models and in vitro studies provided valuable contributions to our knowledge on RyR2 dysfunctions, the human cell models derived from patients’ cells offer new hope for improving our understanding of human clinical diseases and enrich the development of great medical advances. We here discuss the current knowledge on RyR2 dysfunctions associated with mutations and post-translational remodeling. We then reviewed the novel human cellular technologies allowing the correlation of patient’s genome with their cellular environment and providing approaches for personalized RyR-targeted therapeutics.


1996 ◽  
Vol 108 (2) ◽  
pp. 115-124 ◽  
Author(s):  
F Striggow ◽  
B E Ehrlich

The inositol 1,4,5-trisphosphate receptor (InsP3R), an intracellular calcium release channel, is found in virtually all cells and is abundant in the cerebellum. We used Mn2+ as a tool to study two aspects of the cerebellar InsP3R. First, to investigate the structure of the ion pore, Mn2+ permeation through the channel was determined. We found that Mn2+ can pass through the InsP3R; the selectivity sequence for divalent cations is Ba2+ > Sr2+ > Ca2+ > Mg2+ > Mn2+. Second, to begin characterization of the cytosolic regulatory sites responsible for the Ca(2+)-dependent modulation of InsP3R function, the ability of Mn2+ to replace Ca2+ was investigated. We show that Mn2+, as Ca2+, modulates InsP3R activity with a bell-shaped dependence where the affinity of the activation site of the InsP3R is similar for both ions, but higher concentrations of Mn2+ were necessary to inhibit the channel. These results suggest that the two regulatory sites are structurally distinct. Our findings are also important for the understanding of cellular responses when Mn2+ is used to quench the intracellular fluorescence of Ca2+ indicator dyes.


1990 ◽  
Vol 258 (6) ◽  
pp. H1745-H1752 ◽  
Author(s):  
A. M. Vites ◽  
A. Pappano

Inositol 1,4,5-trisphosphate (IP3) and caffeine evoked transient, reversible, and concentration-dependent increases in tension in saponin-treated chick atrial muscle. Contractures evoked by IP3 and caffeine were detected in solutions with 70 microM EGTA at pCa 7.0. In the presence of 7 mM EGTA, neither IP3 nor caffeine was able to evoke a contracture. Maximally effective concentrations of IP3 (20 microM) and caffeine (20 mM) developed tensions to approximately 44 and 83% of that elicited by pCa 5.0 (maximum tension = 100%), respectively. The IP3- or caffeine-induced contractures were consistently reproduced when the sarcoplasmic reticulum (SR) had previously been loaded with calcium. Preexposure to caffeine suppressed the following IP3-induced response. When ryanodine (1-10 microM) was present throughout the SR-loading cycle, the responses to IP3 and caffeine were prevented. However, when ryanodine was added after the SR was loaded with calcium, neither the response to IP3 nor that to caffeine was affected. These results are consistent with the hypothesis that ryanodine inhibition requires prior activation of the SR calcium-release channel. It is concluded that both IP3 and caffeine increased tension in the SR by releasing calcium from it. The effect of IP3 is consistent with its messenger role as a calcium-mobilizing agent.


Sign in / Sign up

Export Citation Format

Share Document