scholarly journals Separate Ion Pathways in a Cl−/H+ Exchanger

2005 ◽  
Vol 126 (6) ◽  
pp. 563-570 ◽  
Author(s):  
Alessio Accardi ◽  
Michael Walden ◽  
Wang Nguitragool ◽  
Hariharan Jayaram ◽  
Carole Williams ◽  
...  

CLC-ec1 is a prokaryotic CLC-type Cl−/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl−. A critical glutamate residue, E148, was previously shown to be required for Cl−/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the intracellular side of the protein, we performed a mutagenesis scan of inward-facing carboxyl-bearing residues and identified E203 as the unique residue whose neutralization abolishes H+ coupling to Cl− transport. Glutamate at this position is strictly conserved in all known CLCs of the transporter subclass, while valine is always found here in CLC channels. The x-ray crystal structure of the E203Q mutant is similar to that of the wild-type protein. Cl− transport rate in E203Q is inhibited at neutral pH, and the double mutant, E148A/E203Q, shows maximal Cl− transport, independent of pH, as does the single mutant E148A. The results argue that substrate exchange by CLC-ec1 involves two separate but partially overlapping permeation pathways, one for Cl− and one for H+. These pathways are congruent from the protein's extracellular surface to E148, and they diverge beyond this point toward the intracellular side. This picture demands a transport mechanism fundamentally different from familiar alternating-access schemes.

2001 ◽  
Vol 359 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Valeria MENCHISE ◽  
Catherine CORBIER ◽  
Claude DIDIERJEAN ◽  
Michele SAVIANO ◽  
Ettore BENEDETTI ◽  
...  

Thioredoxins are ubiquitous proteins which catalyse the reduction of disulphide bridges on target proteins. The catalytic mechanism proceeds via a mixed disulphide intermediate whose breakdown should be enhanced by the involvement of a conserved buried residue, Asp-30, as a base catalyst towards residue Cys-39. We report here the crystal structure of wild-type and D30A mutant thioredoxin h from Chlamydomonas reinhardtii, which constitutes the first crystal structure of a cytosolic thioredoxin isolated from a eukaryotic plant organism. The role of residue Asp-30 in catalysis has been revisited since the distance between the carboxylate OD1 of Asp-30 and the sulphur SG of Cys-39 is too great to support the hypothesis of direct proton transfer. A careful analysis of all available crystal structures reveals that the relative positioning of residues Asp-30 and Cys-39 as well as hydrophobic contacts in the vicinity of residue Asp-30 do not allow a conformational change sufficient to bring the two residues close enough for a direct proton transfer. This suggests that protonation/deprotonation of Cys-39 should be mediated by a water molecule. Molecular-dynamics simulations, carried out either in vacuo or in water, as well as proton-inventory experiments, support this hypothesis. The results are discussed with respect to biochemical and structural data.


1998 ◽  
Vol 51 (9) ◽  
pp. 867 ◽  
Author(s):  
Daniel E. Lynch ◽  
Lisa C. Thomas ◽  
Graham Smith ◽  
Karl A. Byriel ◽  
Colin H. L. Kennard

The crystal structure of the 1 : 1 adduct of N-methylaniline with 5-nitrofuran-2-carboxylic acid has been determined by single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c with Z 4 in a cell of dimensions a 8·467(5), b 6·106(2), c 23·95(1) Å, β 94·48(3)°. The molecules associate in a tetrameric, proton-transfer formation which has potential as a new supramolecular synthon.


2010 ◽  
Vol 1 (3) ◽  
pp. 179-181 ◽  
Author(s):  
Hossein Eshtiagh-Hosseini ◽  
Milad Mahjoobizadeh ◽  
Masoud Mirzaei ◽  
Katharina Fromm ◽  
Aurelien Crochet

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1018-1018
Author(s):  
Hal A. Lewis ◽  
Fred Zhang ◽  
Richard Romero ◽  
Pierre-Yves Bounaud ◽  
Mark E. Wilson ◽  
...  

Abstract Chronic myelogenous leukemia (CML) arises from uncontrolled cell growth driven by a constitutively active BCR-ABL fusion protein tyrosine kinase, which is the product of the pathognomonic Philadelphia chromosomal translocation. Imatinib mesylate (Gleevec) is a BCR-ABL inhibitor used as a first line treatment of CML. Although imatinib is highly effective in chronic phase CML, in advanced disease patients frequently relapse due to the emergence of drug resistance. Approximately two-thirds of resistance is caused by point mutations in the BCR-ABL kinase domain, which give rise to active mutant forms of the enzyme that are insensitive to Gleevec. The T315I mutation represents one of the most common causes of resistance, is resistant to the second generation BCR-ABL inhibitors dasatinib and nilotinib, and represents an important and challenging target for discovery of next generation targeted CML treatments. We have applied X-ray crystallographic screening of our FAST™ fragment library and structure-guided hit-to-lead optimization to identify potent inhibitors of both wild-type and T315I mutant BCR-ABL. These efforts yielded a 7-azaindole compound series that exhibits binding to and inhibition of both wild-type and T315I BCR-ABL. Methods: Wild-type (with Y393F) and T315I Abl kinase domain protein were expressed in E. coli and purified to homogeneity. These proteins were crystallized in the presence of a reference inhibitor followed by addition of the 7-azaindole series compounds soaked into the preformed crystals to displace the reference compound, giving the desired co-crystal. X-ray diffraction data were recorded at the company’s proprietary synchrotron beamline SGX-CAT at the Advanced Photon Source. Three-dimensional enzyme-inhibitor co-crystal structures were determined by molecular replacement and refined to permit modeling of bound ligand. Results: Both wild-type and T315I Abl structures revealed enzyme in the active conformation with inhibitors bound to the kinase hinge region. The crystal structure of 2-amino-5-[3-(1-ethyl-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,N-dimethylbenzamide in complex with T315I, illustrates the typical binding mode which is independent of the 315 residue, and therefore accounts for the compound inhibiting the T315I mutant form of BCR-ABL (see figure). The inhibitor binds to the hinge region of ABL utilizing hydrogen bonding to backbone carbonyl of Glu316 and NH of Met318, with the pyrazole ring stacking in a lipophilic pocket between Phe382 and Tyr253. In addition, the benzamide carbonyl participates in a hydrogen bond interactioin with the backbone-NH of Glu249 of the p-loop. Conclusions: X-ray crystallographic fragment screening and co-crystal structure studies have been successfully employed in discovery/optimization of 7-azaindole series compounds, yielding potent, selective inhibitors of both wild-type and imatinib-resistant forms of BCR-ABL. Figure Figure


2014 ◽  
Vol 70 (7) ◽  
pp. 1965-1976 ◽  
Author(s):  
Clorinda Lori ◽  
Alessandra Pasquo ◽  
Roberta Montanari ◽  
Davide Capelli ◽  
Valerio Consalvi ◽  
...  

The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.


2009 ◽  
Vol 133 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Hyun-Ho Lim ◽  
Christopher Miller

CLC-ec1, a bacterial homologue of the CLC family’s transporter subclass, catalyzes transmembrane exchange of Cl− and H+. Mutational analysis based on the known structure reveals several key residues required for coupling H+ to the stoichiometric countermovement of Cl−. E148 (Gluex) transfers protons between extracellular water and the protein interior, and E203 (Gluin) is thought to function analogously on the intracellular face of the protein. Mutation of either residue eliminates H+ transport while preserving Cl− transport. We tested the role of Gluin by examining structural and functional properties of mutants at this position. Certain dissociable side chains (E, D, H, K, R, but not C and Y) retain H+/Cl− exchanger activity to varying degrees, while other mutations (V, I, or C) abolish H+ coupling and severely inhibit Cl− flux. Transporters substituted with other nonprotonatable side chains (Q, S, and A) show highly impaired H+ transport with substantial Cl− transport. Influence on H+ transport of side chain length and acidity was assessed using a single-cysteine mutant to introduce non-natural side chains. Crystal structures of both coupled (E203H) and uncoupled (E203V) mutants are similar to wild type. The results support the idea that Gluin is the internal proton-transfer residue that delivers protons from intracellular solution to the protein interior, where they couple to Cl− movements to bring about Cl−/H+ exchange.


Sign in / Sign up

Export Citation Format

Share Document