scholarly journals Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel

2008 ◽  
Vol 132 (6) ◽  
pp. 651-666 ◽  
Author(s):  
Jose S. Santos ◽  
Sergey M. Grigoriev ◽  
Mauricio Montal

KvLm is a prokaryotic voltage-gated K+ (Kv) channel from Listeria monocytogenes. The sequence of the voltage-sensing module (transmembrane segments S1-S4) of KvLm is atypical in that it contains only three of the eight conserved charged residues known to be deterministic for voltage sensing in eukaryotic Kv's. In contrast, the pore module (PM), including the S4-S5 linker and cytoplasmic tail (linker-S5-P-S6-C-terminus) of KvLm, is highly conserved. Here, the full-length (FL)-KvLm and the KvLm-PM only proteins were expressed, purified, and reconstituted into giant liposomes. The properties of the reconstituted FL-KvLm mirror well the characteristics of the heterologously expressed channel in Escherichia coli spheroplasts: a right-shifted voltage of activation, micromolar tetrabutylammonium-blocking affinity, and a single-channel conductance comparable to that of eukaryotic Kv's. Conversely, ionic currents through the PM recapitulate both the conductance and blocking properties of the FL-KvLm, yet the KvLm-PM exhibits only rudimentary voltage dependence. Given that the KvLm-PM displays many of the conduction properties of FL-KvLm and of other eukaryotic Kv's, including strict ion selectivity, we conclude that self-assembly of the PM subunits in lipid bilayers, in the absence of the voltage-sensing module, generates a conductive oligomer akin to that of the native KvLm, and that the structural independence of voltage sensing and PMs observed in eukaryotic Kv channels was initially implemented by nature in the design of prokaryotic Kv channels. Collectively, the results indicate that this robust functional module will prove valuable as a molecular template for coupling new sensors and to elucidate PM residue–specific contributions to Kv conduction properties.

2002 ◽  
Vol 119 (6) ◽  
pp. 521-531 ◽  
Author(s):  
David H. Hackos ◽  
Tsg-Hui Chang ◽  
Kenton J. Swartz

In Kv channels, an activation gate is thought to be located near the intracellular entrance to the ion conduction pore. Although the COOH terminus of the S6 segment has been implicated in forming the gate structure, the residues positioned at the occluding part of the gate remain undetermined. We use a mutagenic scanning approach in the Shaker Kv channel, mutating each residue in the S6 gate region (T469-Y485) to alanine, tryptophan, and aspartate to identify positions that are insensitive to mutation and to find mutants that disrupt the gate. Most mutants open in a steeply voltage-dependent manner and close effectively at negative voltages, indicating that the gate structure can both support ion flux when open and prevent it when closed. We find several mutant channels where macroscopic ionic currents are either very small or undetectable, and one mutant that displays constitutive currents at negative voltages. Collective examination of the three types of substitutions support the notion that the intracellular portion of S6 forms an activation gate and identifies V478 and F481 as candidates for occlusion of the pore in the closed state.


2021 ◽  
Author(s):  
Xiao-Feng Tan ◽  
Chanhyung Bae ◽  
Robyn Stix ◽  
Anabel I. Fernandez ◽  
Kate Huffer ◽  
...  

AbstractVoltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory, and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter, and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.


2013 ◽  
Vol 288 (23) ◽  
pp. 16619-16628 ◽  
Author(s):  
Jose S. Santos ◽  
Ruhma Syeda ◽  
Mauricio Montal

Voltage-gated K+ (Kv) channels are molecular switches that sense membrane potential and in response open to allow K+ ions to diffuse out of the cell. In these proteins, sensor and pore belong to two distinct structural modules. We previously showed that the pore module alone is a robust yet dynamic structural unit in lipid membranes and that it senses potential and gates open to conduct K+ with unchanged fidelity. The implication is that the voltage sensitivity of K+ channels is not solely encoded in the sensor. Given that the coupling between sensor and pore remains elusive, we asked whether it is then possible to convert a pore module characterized by brief openings into a conductor with a prolonged lifetime in the open state. The strategy involves selected probes targeted to the filter gate of the channel aiming to modulate the probability of the channel being open assayed by single channel recordings from the sensorless pore module reconstituted in lipid bilayers. Here we show that the premature closing of the pore is bypassed by association of the filter gate with two novel open conformation stabilizers: an antidepressant and a peptide toxin known to act selectively on Kv channels. Such stabilization of the conductive conformation of the channel is faithfully mimicked by the covalent attachment of fluorescein at a cysteine residue selectively introduced near the filter gate. This modulation prolongs the occupancy of permeant ions at the gate. It is this longer embrace between ion and gate that we conjecture underlies the observed stabilization of the conductive conformation. This study provides a new way of thinking about gating.


2020 ◽  
Author(s):  
Jiajun Wang ◽  
Jigneshkumar Dahyabhai Prajapati ◽  
Ulrich Kleinekathöfer ◽  
Mathias Winterhalter

The effect of divalent ions on the permeability of norfloxacin across the major outer membrane channels from <i>E. coli</i> (OmpF, OmpC) and <i>E. aerogenes</i> (Omp35, Omp36) has been investigated at the single channel level. To understand the rate limiting steps in permeation, we reconstituted single porin into planar lipid bilayers and analyzed the ion current fluctuations caused in the presence of norfloxacin. To obtain an atomistic view, we complemented the experiments with millisecond-long free energy calculations based on temperature-accelerated Brownian dynamics simulations to identify the most probable permeation pathways of the antibiotics through the respective pore. Both, experimental analysis and computational modelling, suggest that norfloxacin is able to permeate through the larger porins, i.e., OmpF, OmpC, and Omp35, whereas it only binds to the slightly narrower porin Omp36. Moreover, divalent ions can bind to negatively charged residues inside the porin, reversing the ion selectivity of the pore. In addition, the divalent ions can chelate with the fluoroquinolones and alter their physicochemical properties. The results suggest that the conjugation must break with either one of them when the antibiotics molecules bypass the lumen of the porin, with the conjugation to the antibiotic being more stable than that to the pore. In general, the permeation or binding process of fluoroquinolone in porins occurs irrespective of the presence of divalent ions, but the presences of divalent ions can vary the kinetics significantly.


1996 ◽  
Vol 271 (1) ◽  
pp. C85-C92 ◽  
Author(s):  
C. J. Hatton ◽  
C. Peers

Hypoxic chemoreception in the carotid body involves selective inhibition of K+ channels in type I cells. We have investigated whether cytochrome P-450 may act as an O2 sensor coupling hypoxia to K+ channel inhibition, by investigating the actions of P-450 inhibitors to modulate channel activity (recorded using patch-clamp techniques) in type I cells isolated from 8-to 12-day-old rat pups. The imidazole antimycotic P-450 inhibitors miconazole and clotrimazole (1-10 microM) inhibited the Ca(2+)-activated (KCa) and voltage-gated K+ (Kv) currents in isolated type I cells. Single-channel recordings indicated that the KCa channels could be inhibited directly by miconazole. Miconazole also irreversibly inhibited Ca2+ channel currents. By contrast, acute application of the suicide substrate P-450 inhibitor, 1-aminobenzotriazole (1-ABT; 3 mM) was without effect on K+ or Ca2+ currents. Hypoxia (16-23 mmHg) reversibly inhibited K+ currents and prevented the inhibitory actions of miconazole. Furthermore, the inhibitory actions of miconazole could be partially reversed by hypoxia. Pretreatment of cells for 60 min with 3 mM 1-ABT substantially reduced the inhibitory actions of hypoxia on K+ currents. Our results indicate that imidazole antimycotic P-450 inhibitors can directly and nonselectively inhibit ionic channels in type I cells but, more importantly, provide evidence to suggest that hypoxic inhibition of K+ currents in type I cells is mediated in part at least by cytochrome P-450.


2020 ◽  
Vol 21 (20) ◽  
pp. 7602
Author(s):  
Juan Zhao ◽  
Dimitri Petitjean ◽  
Georges A. Haddad ◽  
Zarah Batulan ◽  
Rikard Blunck

(1) Background: Episodic ataxia type 1 is caused by mutations in the KCNA1 gene encoding for the voltage-gated potassium channel Kv1.1. There have been many mutations in Kv1.1 linked to episodic ataxia reported and typically investigated by themselves or in small groups. The aim of this article is to determine whether we can define a functional parameter common to all Kv1.1 mutants that have been linked to episodic ataxia. (2) Methods: We introduced the disease mutations linked to episodic ataxia in the drosophila analog of Kv1.1, the Shaker Kv channel, and expressed the channels in Xenopus oocytes. Using the cut-open oocyte technique, we characterized the gating and ionic currents. (3) Results: We found that the episodic ataxia mutations variably altered the different gating mechanisms described for Kv channels. The common characteristic was a conductance voltage relationship and inactivation shifted to less polarized potentials. (4) Conclusions: We suggest that a combination of a prolonged action potential and slowed and incomplete inactivation leads to development of ataxia when Kv channels cannot follow or adapt to high firing rates.


2002 ◽  
Vol 87 (3) ◽  
pp. 1376-1385 ◽  
Author(s):  
Jerome Devaux ◽  
Maurice Gola ◽  
Guy Jacquet ◽  
Marcel Crest

Four blockers of voltage-gated potassium channels (Kv channels) were tested on the compound action potentials (CAPs) of rat optic nerves in an attempt to determine the regulation of Kv channel expression during the process of myelination. Before myelination occurred, 4-aminopyridine (4-AP) increased the amplitude, duration, and refractory period of the CAPs. On the basis of their pharmacological sensitivity, 4-AP-sensitive channels were divided in two groups, the one sensitive to kaliotoxin (KTX), dendrotoxin-I (DTX-I), and 4-AP, and the other sensitive only to 4-AP. In addition, tetraethylammonium chloride (TEA) applied alone broadened the CAPs. At the onset of myelination, DTX-I induced a more pronounced effect than KTX; this indicates that a fourth group of channels sensitive to 4-AP and DTX-I but insensitive to KTX had developed. The effects of KTX and DTX-I gradually disappeared during the period of myelination. Electron microscope findings showed that the disappearance of these effects was correlated with the ongoing process of myelination. This was confirmed by the fact that DTX-I and KTX enlarged the CAPs of demyelinated adult optic nerves. These results show that KTX- and DTX-sensitive channels are sequestrated in paranodal regions. During the process of myelination, KTX had less pronounced effects than DTX-I on demyelinated nerves, which suggests that the density of the KTX-sensitive channels decreased during this process. By contrast, 4-AP increased the amplitude, duration, and refractory period of the CAPs at all the ages tested and to a greater extent than KTX and DTX-I. The effects of TEA alone also gradually disappeared during this period. However, effects of TEA on CAPs were observed when this substance was applied after 4-AP to the adult optic nerve; this shows that TEA-sensitive channels are not masked by the myelin sheath. In conclusion, the process of myelination seems to play an important part in the regulation and setting of Kv channels in optic nerve axons.


2021 ◽  
Author(s):  
I-Shan Chen ◽  
Jodene Eldstrom ◽  
David Fedida ◽  
Yoshihiro Kubo

G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important physiological roles in various organs. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited GIRK mutants. By the two-electrode voltage-clamp analysis of GIRK mutants heterologously expressed in Xenopus oocytes, we observed that Kir3.2 G156S permeates Li+ better than Rb+, while T154del or L173R of Kir3.2 and T158A of Kir3.4 permeate Rb+ better than Li+, suggesting a unique conformational change in the G156S mutant. Applications of blockers of the selectivity filter (SF) pathway, Ba2+ or Tertiapin-Q (TPN-Q), remarkably increased the Li+-selectivity of Kir3.2 G156S but did not alter those of the other mutants. In single-channel recordings of Kir3.2 G156S expressed in mouse fibroblasts, two types of events were observed, one attributable to a TPN-Q sensitive K+ current and the second a TPN-Q resistant Li+ current. The results show that a novel Li+ permeable and blocker-resistant pathway exists in G156S in addition to the SF pathway. Mutations in the pore helix (PH), S148F and T151A, also induced high Li+ permeation. Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Anirban Banerjee ◽  
Alice Lee ◽  
Ernest Campbell ◽  
Roderick MacKinnon

Pore-blocking toxins inhibit voltage-dependent K+ channels (Kv channels) by plugging the ion-conduction pathway. We have solved the crystal structure of paddle chimera, a Kv channel in complex with charybdotoxin (CTX), a pore-blocking toxin. The toxin binds to the extracellular pore entryway without producing discernable alteration of the selectivity filter structure and is oriented to project its Lys27 into the pore. The most extracellular K+ binding site (S1) is devoid of K+ electron-density when wild-type CTX is bound, but K+ density is present to some extent in a Lys27Met mutant. In crystals with Cs+ replacing K+, S1 electron-density is present even in the presence of Lys27, a finding compatible with the differential effects of Cs+ vs K+ on CTX affinity for the channel. Together, these results show that CTX binds to a K+ channel in a lock and key manner and interacts directly with conducting ions inside the selectivity filter.


1992 ◽  
Vol 262 (3) ◽  
pp. L327-L336 ◽  
Author(s):  
D. Savaria ◽  
C. Lanoue ◽  
A. Cadieux ◽  
E. Rousseau

Microsomal fractions were prepared from canine and bovine airway smooth muscle (ASM) by differential and gradient centrifugations. Surface membrane vesicles were characterized by binding assays and incorporated into planar lipid bilayers. Single-channel activities were recorded in symmetric or asymmetric K+ buffer systems and studied under voltage and Ca2+ clamp conditions. A large-conductance K(+)-selective channel (greater than 220 pS in 150 mM K+) displaying a high Ca2+, low Ba2+, and charybdotoxin (CTX) sensitivity was identified. Time analysis of single-channel recordings revealed a complex kinetic behavior compatible with the previous schemes proposed for Ca(2+)-activated K+ channels in a variety of biological surface membranes. We now report that the open probability of the channel at low Ca2+ concentration is enhanced on in vitro phosphorylation, which is mediated via an adenosine 3',5'-cyclic monophosphate-dependent protein kinase. In addition to this characterization at the molecular level, a second series of pharmacological experiments were designed to assess the putative role of this channel in ASM strips. Our results show that 50 nM CTX, a specific inhibitor of the large conducting Ca(2+)-dependent K+ channel, prevents norepinephrine transient relaxation on carbamylcholine-precontracted ASM strips. It was also shown that CTX reversed the steady-state relaxation induced by vasoactive intestinal peptide and partially antagonized further relaxation induced by cumulative doses of this potent bronchodilatator. Thus it is proposed that the Ca(2+)-activated K+ channels have a physiological role because they are indirectly activated on stimulation of various membrane receptors via intracellular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document