scholarly journals The nature and origin of spontaneous noise in G protein-gated ion channels.

1991 ◽  
Vol 97 (6) ◽  
pp. 1279-1293 ◽  
Author(s):  
K Okabe ◽  
A Yatani ◽  
A M Brown

Arrival of agonist is generally thought to initiate the signal transduction process in G protein-receptor coupled systems. However, the muscarinic atrial K+ (K+[ACh]) channel opens spontaneously in the absence of applied agonist, giving a noisy appearance to the current records. We investigated the nature and origin of the noise by measuring single channel currents in cell-attached or excised, inside-out membrane patches. Guanosine triphosphate (GTP) produced identical single channel currents in a concentration- and Mg(2+)-dependent manner in the presence or absence of carbachol, but the requirements for GTP were greater in the absence of agonist. Hence the agonist-independent currents appeared to be produced by an endogenous G protein, Gk. This prediction was confirmed when an affinity-purified, sequence-specific Gi-3 alpha antibody or pertussis toxin (PTX) blocked the agonist-independent currents. Candidate endogenous agonists were ruled out by the lack of effect of their corresponding antagonists. Thus agonist-independent currents had the same nature as agonist-dependent K+[ACh] currents and seemed to originate in the same way. We have developed a hypothesis in which agonist-free, empty receptors prime Gk with GTP and Gk activates atrial K+ [ACh] channels producing basal currents or noise. Agonist-independent activation by G proteins of effectors including ion channels appears to be a common occurrence.

It is desirable to be able to predict, from a specified mechanism, the appearance of currents that flow through single ion channels ( a ) to enable interpretation of experiments in which single channel currents are observed, and ( b ) to allow physical meaning to be attached to the results observed in kinetic (noise and relaxation) experiments in which the aggregate of many single channel currents is observed. With this object, distributions (and their means) are derived for the length of the sojourn in any specified subset of states (e. g. all shut states). In general these are found to depend not only on the state in which the sojourn starts, but also on the state that immediately follows the sojourn. The methods described allow derivation of the distribution of, for example, ( a ) the number of openings, and total length of the burst of openings, that may occur during a single occupancy, and ( b ) the apparent gap between such bursts. The methods are illustrated by their application to two simple theories of agonist action. The Castillo-Katz (non-cooperative) mechanism predicts, for example, that the number of openings per occupancy, and the apparent burst length, are independent of agonist concentration whereas a simple cooperative mechanism predicts that both will increase with agonist concentration.


2020 ◽  
pp. 246-255
Author(s):  
Frances Ashcroft ◽  
Paolo Tammaro

Ion channels are membrane proteins that act as gated pathways for the movement of ions across cell membranes. They are found in both surface and intracellular membranes and play essential roles in the physiology of all cell types. An ever-increasing number of human diseases are now known to be caused by defects in ion channel function. To understand how ion channel defects give rise to disease, it is helpful to understand how the ion channel proteins work. This chapter therefore considers what is known of ion channel structure, explains the properties of the single ion channel, and shows how single-channel currents give rise to action potentials and synaptic potentials.


1992 ◽  
Vol 263 (6) ◽  
pp. C1200-C1207 ◽  
Author(s):  
U. Banderali ◽  
G. Roy

Large losses of amino acids by diffusion were previously observed in Madin-Darby canine kidney (MDCK) cells during volume regulation. Also, an outward rectifying anion channel was activated. Because this channel was not selective among anions, it was suggested that it could be permeable to amino acids. Its permeability to aspartate, glutamate, and taurine was studied using the patch-clamp technique in the inside-out configuration. Solutions containing 500 mM aspartate or glutamate were used on the cytoplasmic side of excised patches to detect single-channel currents carried by these anions. Permeability ratios were estimated in two different ways: 1) from the shift in reversal potential of current-voltage curves after anion replacement in the bath solution and 2) from comparisons of amplitudes of single-channel currents carried by tested anions and chloride, respectively. The values of aspartate-to-chloride and glutamate-to-chloride permeability ratios obtained with both methods were quite consistent and were of the order of 0.2 for both amino acids. Taurine in solutions at physiological pH 7.3 is a zwitterionic molecule and bears no net charge. To detect single-channel currents carried by taurine, solutions containing 500 mM taurine at pH 8.2 were used in inside-out experiments. Under these conditions 120 mM of negatively charged taurine was present in the solutions bathing the cytoplasmic side of excised patches. The permeability ratio estimated from the shift in reversal potential was 0.75. These results showed that some of the organic compounds released by cells during regulatory volume decrease could diffuse through this outwardly rectifying anionic channel.


1991 ◽  
Vol 6 (6) ◽  
pp. 563-568 ◽  
Author(s):  
Shu-Ichi Watanabe ◽  
Motohiki Murakami

AbstractUsing patch-clamp techniques, properties of cGMP-activated channel were studied at a single-channel level in order to examine (1) whether any differences are recognized between the cGMP-activated channels of rods and cones in the same animal species, and (2) whether the channel properties of the same photoreceptor class differ in different animal species. Experiments were performed on inside-out membrane patches excised from outer segments of rods and morphological subtypes of cones in the carp retina. Single-channel activities could be recorded when the patches were perfused with low concentrations of cGMP (<10 μM). Throughout five morphological subtypes of cones and rod, single-channel currents showed no significant rectification at membrane hyperpolarization in a low divalent cation solution, and single-channel conductances were almost the same: 13.8 ± 0.2 pS (mean ± s.e.m., n = 23) in cones and 12.7 ± 0.8 pS (n = 3) in rods. These values were significantly smaller than that reported in catfish cones (about 50 pS), and that in rods of the toad and the tiger salamander (about 25 pS). In rods and all subtypes of cones of the carp, open durations of cGMP activated channels were brief. In addition, kinetic parameters of channel openings and closings showed no differences throughout all subtypes of cones and rod.


2004 ◽  
Vol 92 (3) ◽  
pp. 1577-1585 ◽  
Author(s):  
Hua-Jun Feng ◽  
Robert L. Macdonald

αβγ GABAA receptor currents are phasic and desensitizing, whereas αβδ GABAA receptor currents are tonic and have no fast desensitization. αβγ receptors are subsynaptic and mediate phasic inhibition, whereas αβδ receptors are extra- or perisynaptic and mediate tonic inhibition. Given the different roles of these GABAA receptor isoforms and the fact that GABAA receptors are allosterically regulated by extracellular pH in a subunit-dependent manner, we compared the effects of changing pH on rat δ or γ2L subunit–containing GABAA receptor currents. Human embryonic kidney cells (HEK293T) were transfected with cDNAs encoding rat α1, β3, γ2L, or δ GABAA receptor subunits in several binary and ternary combinations, and whole cell and single channel patch-clamp recordings were obtained. Lowering pH substantially enhanced α1β3 receptor currents. This effect was significantly more pronounced for ternary α1β3δ receptors, whereas ternary α1β3γ2L receptors were relatively insensitive to lowered pH. Lowering pH did not affect the extent of desensitization of α1β3 and α1β3γ2L receptor currents, but significantly increased the extent of desensitization of α1β3δ receptor currents. Lowering pH prolonged deactivation of α1β3 and α1β3δ receptor currents and enhanced the “steady-state” currents of α1β3δ receptors evoked by long-duration (28 s) GABA applications. Lowering pH significantly increased mean open duration of α1β3δ steady-state single channel currents due to introduction of a longer-duration open state, suggesting that low pH enhances α1β3δ receptor steady-state currents by modifying GABAA receptor gating properties.


2007 ◽  
Vol 292 (6) ◽  
pp. C2239-C2258 ◽  
Author(s):  
Xia Mao ◽  
Yongping Chai ◽  
Yu-Fung Lin

ATP-sensitive potassium (KATP) channels couple cellular metabolic status to changes in membrane electrical properties. Caffeine (1,2,7-trimethylxanthine) has been shown to inhibit several ion channels; however, how caffeine regulates KATP channels was not well understood. By performing single-channel recordings in the cell-attached configuration, we found that bath application of caffeine significantly enhanced the currents of Kir6.2/SUR1 channels, a neuronal/pancreatic KATP channel isoform, expressed in transfected human embryonic kidney (HEK)293 cells in a concentration-dependent manner. Application of nonselective and selective phosphodiesterase (PDE) inhibitors led to significant enhancement of Kir6.2/SUR1 channel currents. Moreover, the stimulatory action of caffeine was significantly attenuated by KT5823, a specific PKG inhibitor, and, to a weaker extent, by BAPTA/AM, a membrane-permeable Ca2+ chelator, but not by H-89, a selective PKA inhibitor. Furthermore, the stimulatory effect was completely abrogated when KT5823 and BAPTA/AM were co-applied with caffeine. In contrast, the activity of Kir6.2/SUR1 channels was decreased rather than increased by caffeine in cell-free inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels were suppressed regardless of patch configurations. Caffeine also enhanced the single-channel currents of recombinant Kir6.2/SUR2B channels, a nonvascular smooth muscle KATP channel isoform, although the increase was smaller. Moreover, bidirectional effects of caffeine were reproduced on the KATP channel present in the Cambridge rat insulinoma G1 (CRI-G1) cell line. Taken together, our data suggest that caffeine exerts dual regulation on the function of KATP channels: an inhibitory regulation that acts directly on Kir6.2 or some closely associated regulatory protein(s), and a sulfonylurea receptor (SUR)-dependent stimulatory regulation that requires cGMP-PKG and intracellular Ca2+-dependent signaling.


1990 ◽  
Vol 154 (1) ◽  
pp. 201-221
Author(s):  
A. J. Pennington ◽  
R. J. Martin

Acetylcholine-activated single-channel currents were recorded from cell-attached and inside-out patches of isolated muscle vesicles from Ascaris suum. Acetylcholine (1–10 mumols l-1) activated cation-selective channels of two amplitudes: 40–50 pS and 25–35 pS. Both channels had linear I/V relationships and mean open durations independent of voltage. The larger conductance was analysed in detail to determine its open-, closed- and burst-time kinetics; the open and burst durations were composed of two components (short and long), while closed durations had at least three components (short, intermediate and long). The data were then corrected to allow for missing short events in order to estimate various parameters including corrected mean open time (1.26 + 0.11 ms, mean +/− S.E.). Values were also derived for the efficacy (beta/alpha = 4.9) and affinity [1/KD = 147 × 10(3) (mol l-1) −1] of acetylcholine at this receptor. Larger concentrations of acetylcholine (25–100 mumols l-1) were shown to produce desensitization and caused single-channel currents to occur in clusters with long closed times (mean 171 s) between clusters. It was concluded that the extrasynaptic muscle of Ascaris suum contains two types of acetylcholine-activated ion channel and these are possible sites of action of various anthelmintic drugs. This paper is the first to describe acetylcholine-activated single-channel currents in invertebrate muscle.


1984 ◽  
Vol 84 (1) ◽  
pp. 1-23 ◽  
Author(s):  
A L Blatz ◽  
K L Magleby

The conductance and selectivity of the Ca-activated K channel in cultured rat muscle was studied. Shifts in the reversal potential of single channel currents when various cations were substituted for Ki+ were used with the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The selectivity was Tl+ greater than K+ greater than Rb+ greater than NH4+, with permeability ratios of 1.2, 1.0, 0.67, and 0.11. Na+, Li+, and Cs+ were not measurably permeant, with permeabilities less than 0.05 that of K+. Currents with the various ions were typically less than expected on the basis of the permeability ratios, which suggests that the movement of an ion through the channel was not independent of the other ions present. For a fixed activity of Ko+ (77 mM), plots of single channel conductance vs. activity of Ki+ were described by a two-barrier model with a single saturable site. This observation, plus the finding that the permeability ratios of Rb+ and NH+4 to K+ did not change with ion concentration, is consistent with a channel that can contain a maximum of one ion at any time. The empirically determined dissociation constant for the single saturable site was 100 mM, and the maximum calculated conductance for symmetrical solutions of K+ was 640 pS. TEAi+ (tetraethylammonium ion) reduced single channel current amplitude in a voltage-dependent manner. This effect was accounted for by assuming voltage-dependent block by TEA+ (apparent dissociation constant of 60 mM at 0 mV) at a site located 26% of the distance across the membrane potential, starting at the inner side. TEAo+ was much more effective in reducing single channel currents, with an apparent dissociation constant of approximately 0.3 mM.


1998 ◽  
Vol 79 (5) ◽  
pp. 2513-2521 ◽  
Author(s):  
Tomoyuki Nishizaki ◽  
Masahiro Mori

Nishizaki, Tomoyuki and Masahiro Mori. Diverse signal transduction pathways mediated by endogenous P2 receptors in cultured rat cerebral cortical neurons. J. Neurophysiol. 79: 2513–2521, 1998. The present study was conducted to assess the intracellular signaling pathways mediated by receptors for ATP, uridine triphosphate (UTP), and 2-methylthio ATP (2-MeSATP), by monitoring patch-clamp currents and intracellular calcium mobilization in cultured rat cortical cerebral neurons. All three agonists evoked potassium currents and increased the intracellular free Ca2+ concentration ([Ca2+]i), and these effects were inhibited by the broad G-protein inhibitor guanosine-5′- O-(2-thiodiphosphate) (GDPβS) but not by the Gi/o-protein inhibitor pertussis toxin (PTX). UTP-evoked currents were inhibited by either the phospholipase C inhibitor neomycin or the selective protein kinase C (PKC) inhibitor GF109203X, and the rise in cytosolic Ca2+ was inhibited by either neomycin or the inositol 1,4,5-trisphosphate (IP3) receptor antagonist heparin, indicating that the UTP receptor involved phospholipase C-mediated phosphatidylinositol signaling. In contrast, 2-MeSATP–induced currents and rise in cytosolic Ca2+ were not inhibited by either neomycin, or GF109203X, or heparin. 2-MeSATP elicited single-channel currents in the cell-attached patch-clamp configuration and also in excised patches. The G-protein activator GTPγS induced single-channel currents in a fashion that mimicked the effect of 2-MeSATP. These data suggest that 2 MeSATP activated potassium channels by a direct action of G-protein βγ subunits and increased [Ca2+]i by a mechanism independent of phospholipase C stimulation and IP3 production. ATP-evoked currents were partially inhibited by either neomycin or GF109203X, although the rise in cytosolic Ca2+ was not affected by these inhibitors. ATP produced single-channel currents with two major classes of the slope conductance (86 and 95 pS) in cell-attached patches, each of which is consistent with that achieved by 2-MeSATP (85 pS) or UTP (96 pS); the currents with the lower conductance were observed in the outside-out patch-clamp configuration. These results indicate that P2 receptors for UTP and 2-MeSATP are linked to a PTX-insensitive G-protein involving different signal transduction pathways and that ATP responses are mediated by both of these P2 receptors.


2017 ◽  
Author(s):  
Radhakrishnan Gnanasambandam ◽  
Morten Schak Nielsen ◽  
Christopher Nicolai ◽  
Frederick Sachs ◽  
Johannes Pauli Hofgaard ◽  
...  

AbstractResearchers can investigate the mechanistic and molecular basis of many physiological phenomena in cells by analyzing the fundamental properties of single ion channels. These analyses entail recording single channel currents and measuring current amplitudes and transition rates between conductance states. Since most electrophysiological recordings contain noise, the data analysis can proceed by idealizing the recordings to isolate the true currents from the noise. This de-noising can be accomplished with threshold crossing algorithms and Hidden Markov Models, but such procedures generally depend on inputs and supervision by the user, thus requiring some prior knowledge of underlying processes. Channels with unknown gating and/or functional sub-states and the presence in the recording of currents from uncorrelated background channels present substantial challenges to unsupervised analyses.Here we describe and characterize an idealization algorithm based on Rissanen’s Minimum Description Length (MDL) Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics.. Furthermore, we demonstrate that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances.


Sign in / Sign up

Export Citation Format

Share Document