Hydromagnetic disk winds in young stellar objects and active galactic nuclei

1992 ◽  
Vol 394 ◽  
pp. 117 ◽  
Author(s):  
Guy Pelletier ◽  
Ralph E. Pudritz
2012 ◽  
Vol 8 (S290) ◽  
pp. 227-228
Author(s):  
Hiroshi Imai

AbstractHighly collimated, bipolar fast jets are found in asymptotic giant branch (AGB) and post-AGB stars as well as in active galactic nuclei and young stellar objects. It is still unclear how to launch such jets from dying stars that were originally spherically symmetric. Exploration of the stellar jet evolution is also expected to probe its role in shaping a planetary nebula. Interestingly, some of stellar H2O maser sources — water fountains — exhibit stellar jets with spatially and kinematically high collimation in the earliest phase (<1000 years) of the jet evolution. Such water fountains have been identified in 14 sources to date. We have recently conducted interferometric (VLBA, EVN, VERA, VLA) maser and the single-dish (ASTE) CO J = 3 → 2 line observations of the water fountains. They have revealed a typical dynamical age (< 100 yr) and the detailed kinematical structures of the water fountains, possibility of the coexistence of “equatorial flows”, and their locations and kinematics in the Milky Way. Based on these results, the masses and evolutionary statuses of the host stars are also estimated.


2010 ◽  
Vol 19 (06) ◽  
pp. 729-739 ◽  
Author(s):  
E. M. DE GOUVEIA DAL PINO ◽  
G. KOWAL ◽  
L. H. S. KADOWAKI ◽  
P. PIOVEZAN ◽  
A. LAZARIAN

One of the fundamental properties of astrophysical magnetic fields is their ability to change topology through reconnection and in doing so, to release magnetic energy, sometimes violently. In this work, we review recent results on the role of magnetic reconnection and associated heating and particle acceleration in jet/accretion disk systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs).


2010 ◽  
Vol 19 (06) ◽  
pp. 659-669 ◽  
Author(s):  
GABRIELA S. VILA

Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.


1997 ◽  
Vol 163 ◽  
pp. 845-866 ◽  
Author(s):  
Mario Livio

AbstractIt is assumed that the acceleration and collimation mechanisms of jets are the same in all the classes of astrophysical objects which are observed to produce jets. These classes now include: active galactic nuclei, young stellar objects, massive x-ray binaries, low mass x-ray binaries, black hole x-ray transients, symbiotic systems, planetary nebulae, and supersoft x-ray sources.On the basis of this assumption, an attempt is made, to identify the necessary ingredients for the acceleration and collimation mechanism. It is argued that: (i) jets are produced at the center of accretion disks which are threaded by a vertical magnetic field, (ii) the production of powerful jets requires, in addition, an energy/wind source associated with the central object. Tentative explanations for the presence of jets in some classes of objects and absence in others are given. Some critical observation that can test the ideas presented in this paper are suggested.


2015 ◽  
Vol 1 (9) ◽  
pp. e1500686 ◽  
Author(s):  
Simone Scaringi ◽  
Thomas J. Maccarone ◽  
Elmar Körding ◽  
Christian Knigge ◽  
Simon Vaughan ◽  
...  

The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained withKepler/K2and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.


2009 ◽  
Vol 5 (H15) ◽  
pp. 247-248 ◽  
Author(s):  
Elisabete M. de Gouveia Dal Pino ◽  
Pamela Piovezan ◽  
Luis Kadowaki ◽  
Grzegorz Kowal ◽  
Alex Lazarian

AbstractThe most accepted model for jet production is based on the magneto-centrifugal acceleration out off an accretion disk that surrounds the central source (Blandford & Payne, 1982). This scenario, however, does not explain, e.g., the quasi-periodic ejection phenomena often observed in different astrophysical jet classes. de Gouveia Dal Pino & Lazarian (2005) (hereafter GDPL) have proposed that the large scale superluminal ejections observed in microquasars during radio flare events could be produced by violent magnetic reconnection (MR) episodes. Here, we extend this model to other accretion disk systems, namely: active galactic nuclei (AGNs) and young stellar objects (YSOs), and also discuss its hole on jet heating and particle acceleration.


1986 ◽  
Vol 64 (4) ◽  
pp. 362-368 ◽  
Author(s):  
Arieh Königl

Theoretical issues pertaining to the modelling of jets in young stellar objects and in active galactic nuclei are reviewed. The strong morphological similarities between these two types of sources are emphasized, and observational constraints on the basic physical mechanisms that may be responsible for the jet phenomenon are outlined. Particular attention is given to the "momentum-discharge problem" in molecular-cloud outflows and to its possible resolution in terms of a centrifugally driven magnetohydrodynamic wind from an accretion disk. In addition, various propagation effects are discussed, and the relevance to stellar jets of the de Laval collimation mechanism and of the accelerated-clump model for emission knots is assessed. The review concludes with a brief list of potentially useful observational tests.


2010 ◽  
Vol 27 (3) ◽  
pp. 302-320 ◽  
Author(s):  
Frank J. Masci ◽  
Roc M. Cutri ◽  
Paul J. Francis ◽  
Brant O. Nelson ◽  
John P. Huchra ◽  
...  

AbstractThe Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red active galactic nuclei (AGN) and Quasi-Stellar Objects (QSOs).We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the six degree field (6dF) multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. The candidates were selected using a single color cut of J – Ks > 2 to Ks ≲ 15.5 and a galactic latitude of lbl > 30°. 432 spectra were of sufficient quality to enable a reliable classification. 116 sources (∼27%) were securely classified as type I AGN, 20 as probable type I AGN, and 57 as probable type II AGN. Most of them span the redshift range 0.05 < z < 0.5 and only 8 (∼6%) were previously identified as AGN or QSOs. Our selection leads to a significantly higher AGN identification rate amongst local galaxies (>20%) than in any previous (mostly blue-selected) galaxy survey. A small fraction of the type I AGN could have their optical colors reddened by optically thin dust with AV < 2 mag relative to optically selected QSOs. A handful show evidence of excess far-infrared (IR) emission. The equivalent width (EW) and color distributions of the type I and II AGN are consistent with AGN unified models. In particular, the EW of the [Oiii] emission line weakly correlates with optical–near-IR color in each class of AGN, suggesting anisotropic obscuration of the AGN continuum. Overall, the optical properties of the 2MASS red AGN are not dramatically different from those of optically-selected QSOs. Our near-IR selection appears to detect the most near-IR luminous QSOs in the local universe to z≃0.6 and provides incentive to extend the search to deeper near-IR surveys.


Sign in / Sign up

Export Citation Format

Share Document