Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548

1990 ◽  
Vol 358 ◽  
pp. L37 ◽  
Author(s):  
D. Michael Crenshaw ◽  
James H., Jr. Blackwell
1996 ◽  
Vol 173 ◽  
pp. 295-296
Author(s):  
Wei-Hsin Sun ◽  
Charlene A. Heisler ◽  
Matthew A. Malkan

The observed strong UV/Optical excess in many Seyfert 1 galactic nuclei and quasars (QSOs) is well described as thermal radiation from the surface of an optically thick accretion disk surrounding a supermassive black hole (Malkan 1983, Sun and Malkan 1989). This scenario naturally leads to a radially symmetric temperature gradient with the innermost regions the hottest. Thus for a perturbation generated in the inner regions propagating outward, sequential variations from higher to lower frequencies should be expected, aside from the bolometric increase of brightness. However, the extremely intensive International AGN watch (Peterson 1993 and references therein) on NGC 5548 and UV/Optical monitoring campaign on Mkn 335 (Sun et al. 1995) point to opposite conclusions on the time lag between UV and Optical continua, with no lag for NGC 5548 and ∼ 50 days for Mkn 335. We thus began two monitoring programs at Lick Observatory and Mount Stromlo and Siding Spring Observatory (MSSSO) on a sample of Seyfert 1 galaxies with CCD direct imaging to search for more conclusive evidence on the sequential variabilities.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 64-68 ◽  
Author(s):  
J. S. Kaastra ◽  
G. A. Kriss ◽  
M. Cappi ◽  
M. Mehdipour ◽  
P.-O. Petrucci ◽  
...  

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.


2020 ◽  
Vol 499 (1) ◽  
pp. 1480-1498
Author(s):  
D J Walton ◽  
W N Alston ◽  
P Kosec ◽  
A C Fabian ◽  
L C Gallo ◽  
...  

ABSTRACT We present new broad-band X-ray observations of the type-I Seyfert galaxy IRAS 09149–6206, taken in 2018 with XMM–Newton, NuSTAR, and Swift. The source is highly complex, showing a classic ‘warm’ X-ray absorber, additional absorption from highly ionized iron, strong relativistic reflection from the innermost accretion disc and further reprocessing by more distant material. By combining X-ray timing and spectroscopy, we have been able to fully characterize the supermassive black hole in this system, constraining both its mass and – for the first time – its spin. The mass is primarily determined by X-ray timing constraints on the break frequency seen in the power spectrum, and is found to be log [MBH/M⊙] = 8.0 ± 0.6 (1σ uncertainties). This is in good agreement with previous estimates based on the H α and H β line widths, and implies that IRAS 09149–6206 is radiating at close to (but still below) its Eddington luminosity. The spin is constrained via detailed modelling of the relativistic reflection, and is found to be $a^* = 0.94^{+0.02}_{-0.07}$ (90 per cent confidence), adding IRAS 09149–6206 to the growing list of radio-quiet active galactic nuclei (AGNs) that host rapidly rotating black holes. The outflow velocities of the various absorption components are all relatively modest (vout ≲ 0.03c), implying these are unlikely to drive significant galaxy-scale AGN feedback.


2016 ◽  
Vol 822 (1) ◽  
pp. 4 ◽  
Author(s):  
Yan-Rong Li ◽  
Jian-Min Wang ◽  
Luis C. Ho ◽  
Kai-Xing Lu ◽  
Jie Qiu ◽  
...  

2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2021 ◽  
Vol 503 (4) ◽  
pp. 5984-5996
Author(s):  
Mark D Smith ◽  
Martin Bureau ◽  
Timothy A Davis ◽  
Michele Cappellari ◽  
Lijie Liu ◽  
...  

ABSTRACT Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0${^{\prime\prime}_{.}}$11 ($37\,$pc) resolution in the 12CO(2-1) line and $1.3\,$ mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of $2.5\pm 0.3\times 10^{9}\, \mathrm{M_\odot }$ and a stellar I-band mass-to-light ratio of $4.6\pm 0.2\, \mathrm{M_\odot /L_{\odot ,I}}$ (3σ confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


Sign in / Sign up

Export Citation Format

Share Document