Copernicus ultraviolet observations of mass-loss effects in O and B stars

1976 ◽  
Vol 32 ◽  
pp. 429 ◽  
Author(s):  
T. P., Jr. Snow ◽  
D. C. Morton
1970 ◽  
Vol 36 ◽  
pp. 236-237
Author(s):  
Philip M. Solomon

The rocket-ultraviolet observations of strong Doppler-shifted absorption lines of Siiv, Civ, Nv and other ions in the spectrum of O and B supergiants clearly indicate a high velocity outflow of matter from these stars. The presence of moderate ionisation stages in the stellar wind is conclusive evidence that the flow cannot be due to a high temperature corona as is the case for the solar wind. It is shown that the driving mechanism for the hot-star mass loss is radiation pressure exerted on the gas through absorption in resonance lines occurring at wavelengths near the maximum of the star's continuum flux. In the upper layers of these stars the outward force per gram of matter due to the radiation pressure can greatly exceed the gravitational acceleration making a static atmosphere impossible.The problem of a steady-state moving reversing layer is formulated and the solution leads to predictions of mass-loss rates as a function of effective temperature and gravity for all hot stars. These results are in substantial agreement with the observations.


1980 ◽  
Vol 88 ◽  
pp. 271-286 ◽  
Author(s):  
Margherita Hack ◽  
Umberto Flora ◽  
Paolo Santin

The common peculiarities of these two systems are: a) the companion is a massive object (probably m2≥10) whose spectrum is not observable; b) both systems show evidence, though in different degrees, of mass-transfer and mass-loss; c) both present, in different degrees, hydrogen deficiency; d) ultraviolet observations have shown, in both cases, the presence of lines of highly ionized elements like N V, C IV, Si IV, probably formed in an extended envelope because they do not show orbital radial velocity shifts, and cannot be explained by the effective temperature of the star whose spectrum we observe. The latter property seems to be common to several close binaries, as shown by the ultraviolet observations with IUE by Plavec and Koch (1979); e) both systems present infrared excess, suggesting the presence of an extended envelope (Gehrz et al. 1974; Lee and Nariai, 1967; Humphreys and Ney, 1974; Treffers et al. 1976).


1981 ◽  
Vol 59 ◽  
pp. 265-270
Author(s):  
L.R. Yungelson ◽  
A.G. Massevitch ◽  
A.V. Tutukov

It is shown that mass loss by stellar wind with rates observed in O, B-stars cannot change qualitatively their evolution in the core hydrogen-burning stage. The effects, that are usually attributed to the mass loss, can be explained by other causes: e.g., duplicity or enlarged chemically homogeneous stellar cores.The significance of mass loss by stellar wind for the evolution of massive stars was studied extensively by numerous authors (see e.g. Chiosi et al. (1979) and references therein). However, the problem is unclear as yet. There does not exist any satisfactory theory of mass loss by stars. Therefore one is usually forced to assume that mass loss rate depends on some input parameters.


2014 ◽  
Vol 564 ◽  
pp. A70 ◽  
Author(s):  
Jiří Krtička
Keyword(s):  

2019 ◽  
Vol 489 (2) ◽  
pp. 1995-2013 ◽  
Author(s):  
Taylor J Bell ◽  
Michael Zhang ◽  
Patricio E Cubillos ◽  
Lisa Dang ◽  
Luca Fossati ◽  
...  

ABSTRACT The exoplanet WASP-12b is the prototype for the emerging class of ultrahot, Jupiter-mass exoplanets. Past models have predicted – and near-ultraviolet observations have shown – that this planet is losing mass. We present an analysis of two sets of 3.6 and 4.5 $\mu \rm{m}$Spitzer phase curve observations of the system which show clear evidence of infrared radiation from gas stripped from the planet, and the gas appears to be flowing directly toward or away from the host star. This accretion signature is only seen at 4.5 $\mu \rm{m}$, not at 3.6 $\mu \rm{m}$, which is indicative either of CO emission at the longer wavelength or blackbody emission from cool, ≲600 K gas. It is unclear why WASP-12b is the only ultrahot Jupiter to exhibit this mass-loss signature, but perhaps WASP-12b’s orbit is decaying as some have claimed, while the orbits of other exoplanets may be more stable; alternatively, the high-energy irradiation from WASP-12A may be stronger than the other host stars. We also find evidence for phase offset variability at the level of 6.4σ (46.2°) at 3.6 $\mu \rm{m}$.


1981 ◽  
Vol 247 ◽  
pp. 173 ◽  
Author(s):  
R. Gathier ◽  
H. J. G. L. M. Lamers ◽  
T. P. Snow
Keyword(s):  
B Stars ◽  

2016 ◽  
Vol 12 (S329) ◽  
pp. 242-245
Author(s):  
Chris Bard ◽  
Richard Townsend

AbstractMassive star winds greatly influence the evolution of both their host star and local environment though their mass-loss rates, but current radiative line-driven wind models do not incorporate any magnetic effects. Recent surveys of O and B stars have found that about ten percent have large-scale, organized magnetic fields. These massive-star magnetic fields, which are thousands of times stronger than the Sun’s, affect the inherent properties of their own winds by changing the mass-loss rate. To quantify this, we present a simple surface mass-flux scaling over the stellar surface which can be easily integrated to get an estimate of the mass-loss rate for a magnetic massive star. The overall mass-loss rate is found to decrease by factors of 2-5 relative to the non-magnetic CAK mass-loss rate.


2013 ◽  
Vol 559 ◽  
pp. A15 ◽  
Author(s):  
R. K. Prinja ◽  
D. L. Massa
Keyword(s):  

1994 ◽  
Vol 162 ◽  
pp. 412-413
Author(s):  
R.M. Torres ◽  
A. Damineli-Neto ◽  
J.A. de Freitas Pacheco

FeII emission lines are present in a variety of astrophysical objects and, in particular, in Be stars, where in some situations they can also be seen in absorption. Selvelli & Araujo (1984) studied a sample of classical Be stars that have FeII emission lines in the optical region. The analysis of IUE spectra of those stars revealed that, for the majority of the objects, neither absorption nor emission FeII features were present in the UV. The conclusion was that their data could not support excitation of FeII by continuum fluorescence. On the other hand, FeIII of circumstellar origin is often seen in absorption in the UV spectra of Be stars (Snow & Stalio 1987 and references therein). This could be an indication that the optical FeII emission lines are originated from recombination and cascade. However, Selvelli & Araujo (1984) argued that, since the multiplet UV 191 of FeII does not appear in emission, that mechanism is probably not relevant. In the present work we report new spectroscopic observations in the near infrared of a sample of 60 Be stars, including the prominent FeII 999.7 nm emission line. This line is also present in the spectra of superluminous B stars for which mass loss rates have recently been estimated (Lopes, Damineli-Neto & Freitas Pacheco 1992). We derived mass loss rates from the infrared line luminosities, in agreement with those derived by other methods. We also found a new evidence of the Be envelope flattening through the FeII/Paδ line ratio.


2000 ◽  
Vol 175 ◽  
pp. 632-635
Author(s):  
J.E. Bjorkman ◽  
B.P. Abbott

AbstractUsing the wind-compressed disk model to determine the density and velocity of a rapidly rotating wind, we calculate the 2-D ionization structure and corresponding line profiles. We find that previous estimates of the mass-loss rate based on spherically symmetric models may be a factor of 5–10 too small.


Sign in / Sign up

Export Citation Format

Share Document