Tip‐Tilt Error in Lyot Coronagraphs

2005 ◽  
Vol 621 (2) ◽  
pp. 1153-1158 ◽  
Author(s):  
James P. Lloyd ◽  
Anand Sivaramakrishnan
Keyword(s):  
2016 ◽  
Vol 10 (2) ◽  
pp. 613-622 ◽  
Author(s):  
Wiley Steven Bogren ◽  
John Faulkner Burkhart ◽  
Arve Kylling

Abstract. We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.


2018 ◽  
Vol 38 (2) ◽  
pp. 0211002
Author(s):  
李韬杰 Li Taojie ◽  
吴鹏 Wu Peng ◽  
尹韶云 Yin Shaoyun ◽  
杨正 Yang Zheng ◽  
杜春雷 Du Chunlei ◽  
...  

Author(s):  
Penghai Zhang ◽  
Yaolong Chen

Hydrostatic spindles are widely used in precision optical grinder and lathe. Their high precision comes from the error averaging effect of oil film. The purpose of this paper is to give the quantitative analysis of the error averaging effect for a newly developed axial locking-prevention hydrostatic spindle. An approximate error motion model of the hydrostatic spindle is established to analyze the internal relationship between the geometric errors of the shaft and the error motions of the spindle including radial, tilt and axial error motions. The theoretical analysis shows that, the roundness errors of the two journals have a major impact on error motions while the coaxiality errors of two journals, the perpendicularity errors of front thrust plate and the coaxiality errors of the land of back thrust bearing, have no significant influences on error motions. The elliptical component of roundness errors of the two journals has significant influence on the axial error motion but no influence on the pure radial and tilt error motions, resulting into the fourth harmonic component of axial error motion. The trilobal component of roundness errors of the two journals has significant influence on the pure radial and tilt error motions but no influence on the axial error motion, resulting in the third harmonic component of pure radial and tilt error motions. The changes of recess pressures are not necessary condition for the error motions. Additionally, the experiment analysis shows that, the third harmonic component is the main part of the measured radial error motion and the third, fourth harmonic components are the main parts of the measured face error motion, which can be reasonably explained by the theory. The model proposed in this paper can be used to guide the precision design and optimization of hydrostatic spindle.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3933
Author(s):  
Zhiying Cui ◽  
Fengwu Bai ◽  
Zhifeng Wang ◽  
Fuqiang Wang

In this paper, an optical structure design for a solar furnace is described. Based on this configuration, Monte Carlo ray tracing simulations are carried out to analyze the influences of four optical factors on the concentrated solar heat flux distribution. According to the practical mirror shape adjustment approach, the curved surface of concentrator facet is obtained by using the finite element method. Due to the faceted reflector structure, the gaps between the adjacent mirror arrays and the orientations of facets are also considered in the simulation model. It gives the allowable error ranges or restrictions corresponding to the optical factors which individually effect the system in Beijing: The tilt error of heliostat should be less than 4 mrad; the tilt error of the concentrator in the orthogonal directions should be both less than 2 mrad; the concentrator facets with the shape most approaching paraboloid would greatly resolve slope error and layout errors arising in the concentrator. Besides, by comparing the experimentally measured irradiance with the simulated results, the optical performance of the facility is evaluated to investigate their comprehensive influence. The results are useful to help constructors have a better understanding of the solar furnace’s optical behavior under conditions of multiple manufacture restrictions.


2002 ◽  
Vol 19 (3) ◽  
pp. 322-339 ◽  
Author(s):  
Brian L. Bosart ◽  
Wen-Chau Lee ◽  
Roger M. Wakimoto

Abstract The navigation correction method proposed in Testud et al. (referred to as the THL method) systematically identifies uncertainties in the aircraft Inertial Navigation System and errors in the radar-pointing angles by analyzing the radar returns from a flat and stationary earth surface. This paper extends the THL study to address 1) error characteristics on the radar display, 2) sensitivity of the dual-Doppler analyses to navigation errors, 3) fine-tuning the navigation corrections for individual flight legs, and 4) identifying navigation corrections over a flat and nonstationary earth surface (e.g., ocean). The results show that the errors in each of the parameters affect the dual-Doppler wind analyses and the first-order derivatives in different manners. The tilt error is the most difficult parameter to determine and has the greatest impact on the dual-Doppler analysis. The extended THL method can further reduce the drift, ground speed, and tilt errors in all flight legs over land by analyzing the residual velocities of the earth surface using the corrections obtained in the calibration legs. When reliable dual-Doppler winds can be deduced at flight level, the Bosart–Lee–Wakimoto method presented here can identify all eight errors by satisfying three criteria: 1) the flight-level dual-Doppler winds near the aircraft are statistically consistent with the in situ winds, 2) the flight-level dual-Doppler winds are continuous across the flight track, and 3) the surface velocities of the left (right) fore radar have the same magnitude but opposite sign as their counterparts of right (left) aft radar. This procedure is able to correct airborne Doppler radar data over the ocean and has been evaluated using datasets collected during past experiments. Consistent calibration factors are obtained in multiple legs. The dual-Doppler analyses using the corrected data are statistically superior to those using uncorrected data.


Author(s):  
Suhash Ghosh ◽  
Chittaranjan Sahay ◽  
Poorna Pruthvi Chandra Malempati

Abstract From power stations to power tools, from the smallest watch to the largest car, all contain round components. In precision machining of cylindrical parts, the measurement and evaluation of roundness (also called circularity in ASME Geometric Dimensioning & Tolerancing Y14.5) and cylindricity are indispensable components to quantify form tolerance. Of all the methods of measuring these form errors, the most precise is the one with accurate spindle/turntable type measuring instrument. On the instrument, the component is rotated on a highly accurate spindle which provides an imaginary circular datum. The workpiece axis is aligned with the axis of the spindle by means of a centering and tilt adjustment leveling table. In this article, the authors have investigated the dependence of circularity form error on instrument’s centering error (also known as eccentricity) and tilt error. It would be intriguing to map this nonlinear relationship within its effective boundaries and to investigate the limits beyond which the measurement costs and time remain no more efficient. In this study, a test part with different circular and cylindrical features were studied with varying levels of predetermined instrument eccentricity and tilt errors. Additionally, this article explores the significance of incorporating these parameters into undergraduate and graduate engineering curricula, and be taught as an improved toolkit to the aspiring engineers, process engineers and quality control professionals.


Sign in / Sign up

Export Citation Format

Share Document