scholarly journals A Novel Immunohistochemical Assay for the Detection of Ebola Virus in Skin: Implications for Diagnosis, Spread, and Surveillance of Ebola Hemorrhagic Fever

1999 ◽  
Vol 179 (s1) ◽  
pp. S36-S47 ◽  
Author(s):  
Sherif R. Zaki ◽  
Wun‐Ju Shieh ◽  
Patricia W. Greer ◽  
Cynthia S. Goldsmith ◽  
Tara Ferebee ◽  
...  
Author(s):  
M. Xu ◽  
C. X. Cao ◽  
H. F. Guo

Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff’s scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Enzo Maria Vingolo ◽  
Giuseppe Alessio Messano ◽  
Serena Fragiotta ◽  
Leopoldo Spadea ◽  
Stefano Petti

Ebola virus disease (EVD—formerly known as Ebola hemorrhagic fever) is a severe hemorrhagic fever caused by lipid-enveloped, nonsegmented, negative-stranded RNA viruses belonging to the genusEbolavirus. Case fatality rates may reach up to 76% of infected individuals, making this infection a deadly health problem in the sub-Saharan population. At the moment, there are still no indications on ophthalmological clinical signs and security suggestions for healthcare professionals (doctors and nurses or cooperative persons). This paper provides a short but complete guide to reduce infection risks.


2008 ◽  
Vol 82 (11) ◽  
pp. 5664-5668 ◽  
Author(s):  
Thomas W. Geisbert ◽  
Kathleen M. Daddario-DiCaprio ◽  
Kinola J. N. Williams ◽  
Joan B. Geisbert ◽  
Anders Leung ◽  
...  

ABSTRACT Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.


2003 ◽  
Vol 4 (4) ◽  
pp. 276-281 ◽  
Author(s):  
Adeline M. Nyamathi ◽  
John L. Fahey ◽  
Heather Sands ◽  
Adrian M. Casillas

Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapongrade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.


2001 ◽  
Vol 75 (10) ◽  
pp. 4649-4654 ◽  
Author(s):  
Manisha Gupta ◽  
Siddhartha Mahanty ◽  
Mike Bray ◽  
Rafi Ahmed ◽  
Pierre E. Rollin

ABSTRACT Ebola hemorrhagic fever is a severe, usually fatal illness caused by Ebola virus, a member of the filovirus family. The use of nonhomologous immune serum in animal studies and blood from survivors in two anecdotal reports of Ebola hemorrhagic fever in humans has shown promise, but the efficacy of these treatments has not been demonstrated definitively. We have evaluated the protective efficacy of polyclonal immune serum in a mouse model of Ebola virus infection. Our results demonstrate that mice infected subcutaneously with live Ebola virus survive infection and generate high levels of anti-Ebola virus immunoglobulin G (IgG). Passive transfer of immune serum from these mice before challenge protected upto 100% of naive mice against lethal Ebola virus infection. Protection correlated with the level of anti-Ebola virus IgG titers, and passive treatment with high-titer antiserum was associated with a delay in the peak of viral replication. Transfer of immune serum to SCID mice resulted in 100% survival after lethal challenge with Ebola virus, indicating that antibodies alone can protect from lethal disease. Thus antibodies suppress or delay viral growth, provide protection against lethal Ebola virus infection, and may not require participation of other immune components for protection.


Fractals ◽  
2021 ◽  
Author(s):  
SHAHER MOMANI ◽  
R. P. CHAUHAN ◽  
SUNIL KUMAR ◽  
SAMIR HADID

The Ebola virus infection (EVI), generally known as Ebola hemorrhagic fever, is a major health concern. The occasional outbreaks of virus occur primarily in certain parts of Africa. Many researches have been devoted to the study of the Ebola virus disease. In this paper, we have taken susceptible-infected-recovered-deceased-environment (SIRDP) system to investigate the dynamics of Ebola virus infection. We adopted fractional operators for a better illustration of model dynamics and memory effects. Initially, the Ebola disease model is modified with Caputo–Fabrizio arbitrary operator in Caputo sense (CFC) and we employed the fixed-point results for the existence and uniqueness of the solution of the fractional system. Further, we adopted the arbitrary fractional conformable and [Formula: see text]-conformable derivatives to the alternative representation of the model. For the numerical approximation of the system, we show a numerical technique based on the fundamental theorem of fractional calculus for CFC derivative and a numerical scheme called the Adams–Moulton for conformable derivatives. Finally, for the validation of theoretical results, the numerical simulations are displayed.


2014 ◽  
Vol 6 (2) ◽  
pp. 0-0
Author(s):  
Ayush Agarwal ◽  
Omkar Singh ◽  
VK Rastogi

ABSTRACT • Ebola virus disease (EVD), also known as Ebola hemorrhagic fever, is a severe, often fatal illness of human beings having a case fatality rate of up to 90%. • Ebola virus disease outbreaks occur primarily in remote Central and West Africa, near the tropical rainforests. • The virus is transmitted to humans from wild animals and spreads in the human beings through physical contact. • It does not transmit through vectors or air-borne droplets. • Severely ill patients require intensive supportive care. No specific treatment or vaccine is available for use.


2015 ◽  
Vol 4 (2) ◽  
pp. 37
Author(s):  
Yunpeng Wang ◽  
Yuchen Zhang

<p>Ebola hemorrhagic fever is a potent infectious disease by Ebola virus caused 90% mortality rate. Ebola virus was first isolated in 1976 by, for single-stranded negative segment, non-segmented, enveloped RNA viruses belonging to filamentous virus family. Ebola virus can be divided into five different subtypes. Vaccination is the most conventional and effective prevention and infection control methods in recent years. It has made great progress in the study on the vaccine for Ebola virus. In this paper, research progress Ebola hemorrhagic fever vaccine was reviewed.</p>


2021 ◽  
Author(s):  
Cheng Cao ◽  
Lin Zhu ◽  
Ting Gao ◽  
Xuan Liu

Abstract Ebola virus (EBOV), one of the deadliest viruses, is the cause of fatal Ebola hemorrhagic fever (EHF)1,2. The underlying mechanism of viral replication and EBOV-related hemorrhage is not fully understood. Here, we show that EBOV VP35, a cofactor of viral RNA-dependent RNA polymerase, binds human A kinase interacting protein (AKIP1), which consequently activates protein kinase A (PKA) and PKA-downstream transcription factor CREB1. During EBOV infection, CREB1 is recruited into EBOV ribonucleoprotein complexes in viral inclusion bodies (VIBs) and employed for viral replication. AKIP1 depletion or PKA-CREB1 inhibition dramatically impairs EBOV replication. Meanwhile, the transcription of several coagulation-related genes, including THBD and SERPINB2, is substantially upregulated by VP35-dependent CREB1 activation, which may contribute to EBOV-related hemorrhage. The finding that EBOV VP35 hijacks the host PKA-CREB1 signal axis for viral replication and pathogenesis provides novel potential therapeutic approaches against Ebola virus disease.


Sign in / Sign up

Export Citation Format

Share Document