scholarly journals Simultaneous Determination of the Cosmic Ray Ionization Rate and Fractional Ionization in DR 21(OH)

2008 ◽  
Vol 684 (2) ◽  
pp. 1221-1227 ◽  
Author(s):  
Talayeh Hezareh ◽  
Martin Houde ◽  
Carolyn McCoey ◽  
Charlotte Vastel ◽  
Ruisheng Peng
2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ararat G. Yeghikyan

The transformation of the energy dependence of the cosmic ray proton flux in the keV to GeV region is investigated theoretically when penetrating inside molecular clouds ( mag). The computations suggest that energy losses of the cosmic ray particles by interaction with the matter of the molecular cloud are principally caused by the inelastic (electronic) interaction potential; the transformed energy distribution of energetic protons is determined mainly by the column density of the absorbing medium. A cutoff of the cosmic ray spectrum inside clouds by their magnetic fields is also phenomenologically taken into account. This procedure allows a determination of environment-dependent ionization rates of molecular clouds. The theoretically predicted ionization rates are in good agreement with those derived from astronomical observations of absorption lines in the spectrum of the cloud connected with the Herbig Be star LkH 101.


1980 ◽  
Vol 87 ◽  
pp. 339-340
Author(s):  
Alwyn Wootten ◽  
Ronald Snell ◽  
A. E. Glassgold

A new method for estimating electron fractions in shielded molecular clouds is proposed on the basis of gas phase ion-molecule reactions which involves measuring the quantity . Applied to existing data, it yields upper limits to Xe in the range from 10−8 to 10−7 for a variety of clouds, warm as well as cool. An upper bound to the cosmic ray ionization rate is also obtained.


1978 ◽  
Vol 48 ◽  
pp. 287-293 ◽  
Author(s):  
Chr. de Vegt ◽  
E. Ebner ◽  
K. von der Heide

In contrast to the adjustment of single plates a block adjustment is a simultaneous determination of all unknowns associated with many overlapping plates (star positions and plate constants etc. ) by one large adjustment. This plate overlap technique was introduced by Eichhorn and reviewed by Googe et. al. The author now has developed a set of computer programmes which allows the adjustment of any set of contemporaneous overlapping plates. There is in principle no limit for the number of plates, the number of stars, the number of individual plate constants for each plate, and for the overlapping factor.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
YS Jung ◽  
JB Weon ◽  
CJ Ma

Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
AN Assimopoulou ◽  
M Ganzera ◽  
H Stuppner ◽  
VP Papageorgiou

Sign in / Sign up

Export Citation Format

Share Document