Interactions between Genetic Drift, Gene Flow, and Selection Mosaics Drive Parasite Local Adaptation

2009 ◽  
Vol 173 (2) ◽  
pp. 212-224 ◽  
Author(s):  
Sylvain Gandon ◽  
Scott L. Nuismer
2021 ◽  
Author(s):  
Marisa C W Lim ◽  
Ke Bi ◽  
Christopher C Witt ◽  
Catherine H Graham ◽  
Liliana M Dávalos

Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them “taller” biogeographic barriers.


2021 ◽  
Vol 288 (1952) ◽  
pp. 20210407
Author(s):  
René D. Clark ◽  
Matthew L. Aardema ◽  
Peter Andolfatto ◽  
Paul H. Barber ◽  
Akihisa Hattori ◽  
...  

Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic variation across a species' range is of great interest in ecology and evolution, especially in an era of global change. While theory predicts how and when populations at range margins are likely to undergo local adaptation, empirical evidence testing these models remains sparse. Here, we address this knowledge gap by investigating the relationship between selection, gene flow and genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow from the core to the edge and genomic signatures of local adaptation at 56 single nucleotide polymorphisms in 25 candidate genes, most of which are significantly correlated with minimum annual sea surface temperature. Several of these candidate genes play a role in functions that are upregulated during cold stress, including protein turnover, metabolism and translation. Our results illustrate how spatially divergent selection spanning the range core to the periphery can occur despite the potential for strong genetic drift at the range edge and moderate gene flow from the core populations.


2017 ◽  
Vol 1 (9) ◽  
pp. 1407-1410 ◽  
Author(s):  
Staffan Jacob ◽  
Delphine Legrand ◽  
Alexis S. Chaine ◽  
Dries Bonte ◽  
Nicolas Schtickzelle ◽  
...  

2020 ◽  
Author(s):  
Enikő Szép ◽  
Himani Sachdeva ◽  
Nick Barton

AbstractThis paper analyses the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.


2012 ◽  
pp. 71-116 ◽  
Author(s):  
Konstantin V. Krutovsky ◽  
Jaroslaw Burczyk ◽  
Igor Chybicki ◽  
Reiner Finkeldey ◽  
Tanja Pyhäjärvi ◽  
...  

2020 ◽  
Vol 171 ◽  
pp. 103933
Author(s):  
Aldana S. López ◽  
Dardo R. López ◽  
Gonzalo Caballé ◽  
Guillermo L. Siffredi ◽  
Paula Marchelli

2020 ◽  
Vol 375 (1806) ◽  
pp. 20190532 ◽  
Author(s):  
Alexandre Blanckaert ◽  
Claudia Bank ◽  
Joachim Hermisson

Gene flow tends to impede the accumulation of genetic divergence. Here, we determine the limits for the evolution of postzygotic reproductive isolation in a model of two populations that are connected by gene flow. We consider two selective mechanisms for the creation and maintenance of a genetic barrier: local adaptation leads to divergence among incipient species due to selection against migrants, and Dobzhansky–Muller incompatibilities (DMIs) reinforce the genetic barrier through selection against hybrids. In particular, we are interested in the maximum strength of the barrier under a limited amount of local adaptation, a challenge that many incipient species may initially face. We first confirm that with classical two-locus DMIs, the maximum amount of local adaptation is indeed a limit to the strength of a genetic barrier. However, with three or more loci and cryptic epistasis, this limit holds no longer. In particular, we identify a minimal configuration of three epistatically interacting mutations that is sufficient to confer strong reproductive isolation. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.


2019 ◽  
Vol 36 (11) ◽  
pp. 2557-2571 ◽  
Author(s):  
Tuomas Hämälä ◽  
Outi Savolainen

AbstractShort-scale local adaptation is a complex process involving selection, migration, and drift. The expected effects on the genome are well grounded in theory but examining these on an empirical level has proven difficult, as it requires information about local selection, demographic history, and recombination rate variation. Here, we use locally adapted and phenotypically differentiated Arabidopsis lyrata populations from two altitudinal gradients in Norway to test these expectations at the whole-genome level. Demography modeling indicates that populations within the gradients diverged <2 kya and that the sites are connected by gene flow. The gene flow estimates are, however, highly asymmetric with migration from high to low altitudes being several times more frequent than vice versa. To detect signatures of selection for local adaptation, we estimate patterns of lineage-specific differentiation among these populations. Theory predicts that gene flow leads to concentration of adaptive loci in areas of low recombination; a pattern we observe in both lowland-alpine comparisons. Although most selected loci display patterns of conditional neutrality, we found indications of genetic trade-offs, with one locus particularly showing high differentiation and signs of selection in both populations. Our results further suggest that resistance to solar radiation is an important adaptation to alpine environments, while vegetative growth and bacterial defense are indicated as selected traits in the lowland habitats. These results provide insights into genetic architectures and evolutionary processes driving local adaptation under gene flow. We also contribute to understanding of traits and biological processes underlying alpine adaptation in northern latitudes.


Author(s):  
Jonás A. Aguirre‐Liguori ◽  
Brandon S. Gaut ◽  
Juan Pablo Jaramillo‐Correa ◽  
Maud I. Tenaillon ◽  
Salvador Montes‐Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document