Spatial Scales of Population Synchrony in Predator-Prey Systems

2020 ◽  
Vol 195 (2) ◽  
pp. 216-230
Author(s):  
Javier Jarillo ◽  
Bernt-Erik Sæther ◽  
Steinar Engen ◽  
Francisco Javier Cao-García
2020 ◽  
Vol 650 ◽  
pp. 37-61 ◽  
Author(s):  
KE Axler ◽  
S Sponaugle ◽  
C Briseño-Avena ◽  
F Hernandez ◽  
SJ Warner ◽  
...  

River plumes discharging into continental shelf waters have the potential to influence the distributions, predator-prey relationships, and thus survival of nearshore marine fish larvae, but few studies have been able to characterize the plume environment at sufficiently fine scales to resolve the underlying mechanisms. We used a high-resolution plankton imaging system and a sparse convolutional neural network to automate image classification of larval fishes, their planktonic prey (calanoid copepods), and gelatinous planktonic predators (ctenophores, hydromedusae, and siphonophores) over broad spatial scales (km) and multiple pulses of estuarine water exiting Mobile Bay (Alabama, USA) into the northern Gulf of Mexico from 9-11 April 2016. Fine-scale (1 m) plankton distributions were examined to analyze predator-prey relationships across 3 distinct plume regimes that varied by degree of wind-forcing and mixing rates. In calm wind conditions, the water column was highly stratified, and fish larvae and zooplankton were observed aggregating in a region of river plume-derived hydrodynamic convergence. As winds strengthened, the water column was subjected to downwelling and highly turbulent conditions, and there was decreasing spatial overlap between larval fishes and their zooplankton prey and predators. Our results indicate that high-discharge plume regimes characterized by strong wind-forcing and turbulence can rapidly shift the physical and trophic environments from favorable to unfavorable for fish larvae. Multiple pathways for both nearshore retention and advective dispersal of fish larvae were also identified. Documenting this variability is a first step toward understanding how high discharge events and physical forcing can affect fisheries production in river-dominated coastal ecosystems worldwide.


Oikos ◽  
2018 ◽  
Vol 127 (10) ◽  
pp. 1459-1470 ◽  
Author(s):  
Javier Jarillo ◽  
Bernt-Erik Saether ◽  
Steinar Engen ◽  
Francisco J. Cao

2009 ◽  
Vol 20 (01) ◽  
pp. 71-84 ◽  
Author(s):  
GUI-QUAN SUN ◽  
ZHEN JIN ◽  
YI-GUO ZHAO ◽  
QUAN-XING LIU ◽  
LI LI

The vast majority of models for spatial dynamics of natural populations assume a homogeneous physical environment. However, in practice, dispersing organisms may encounter landscape features that significantly inhibit their movement. And spatial patterns are ubiquitous in nature, which can modify the temporal dynamics and stability properties of population densities at a range of spatial scales. Thus, in this paper, a predator-prey system with Michaelis-Menten-type functional response and self- and cross-diffusion is investigated. Based on the mathematical analysis, we obtain the condition of the emergence of spatial patterns through diffusion instability, i.e., Turing pattern. A series of numerical simulations reveal that the typical dynamics of population density variation is the formation of isolated groups, i.e., stripe-like or spotted or coexistence of both. The obtained results show that the interaction of self-diffusion and cross-diffusion plays an important role on the pattern formation of the predator-prey system.


2009 ◽  
Vol 20 (11) ◽  
pp. 1861-1870 ◽  
Author(s):  
PENG ZHOU ◽  
JINGYU WANG ◽  
XIAODONG LI ◽  
ZHEN JIN

Spatial patterns have influence on modifying the temporal dynamics and stability properties of population densities at a range of spatial scales. Thus, in this paper, we have considered a predator-prey model taking into account both diffusion and migration. We present a theoretical analysis of the condition of emerging spatial pattern. The results of numerical simulations reveal that the migration has marked effect on the pattern formation of the population, i.e. changing Turing pattern to be traveling pattern. The obtained results show that the modeling by both migrations and diffusion can account for the dynamic complexity of ecosystems.


2012 ◽  
Vol 69 (2) ◽  
pp. 259-272
Author(s):  
Kun Chen ◽  
Kung-Sik Chan ◽  
Kevin M. Bailey ◽  
Kerim Aydin ◽  
Lorenzo Ciannelli

We developed a hybrid cellular automata (CA) modelling approach to explore the dynamics of a key predator–prey interaction in a marine system; our study is motivated by the quest for better understanding of the scale and heterogeneity-related effects on the arrowtooth flounder (Atheresthes stomias) and walleye pollock (Theragra chalcogramma) dynamics during the summer feeding season in the eastern Bering Sea (EBS), but can be readily extended to other systems. The spatially explicit and probabilistic CA model incorporates individual behaviours and strategies and local interactions among species, as well as spatial and temporal heterogeneity due to geographical and (or) environmental changes in the physical environment. The model is hybridized, with an individual-based model (IBM) approach for increasing its capacity and continuum and for balancing between computational efficiency and model validity, which makes it suitable for simulating predator–prey dynamics in a large, complex ecological environment. We focus on the functional and aggregative responses of predators to prey density at different spatial scales, the effects of individual behaviours, and the impacts of systematic heterogeneity. Simulations from the model with suitable parameter values share qualitatively similar features found in field observations, e.g., local aggregations around hydrographical features. Spatial heterogeneity is an important aspect of whether local-scale functional and aggregative responses reflect those operating over large, or global, scales.


Author(s):  
Sandra Gordillo ◽  
Mariano E. Malvé ◽  
Gisela A. Morán ◽  
Gabriella M. Boretto

AbstractNaticids and muricids are the main drilling gastropod families that leave a characteristic hole in their shelled prey. Drilling predation can be evaluated along spatial scales, and different latitudinal patterns (equatorward, poleward, mid-latitude peaks or no trend at all) have already been described. For Argentine Patagonia, most studies have analysed muricid predation, but scant information is available on naticid predation. This study provides evidence of predation by the moon snail Notocochlis isabelleana on a thin and fragile burrowing bivalve, Darina solenoides, along the intertidal sandflats at Pozo Salado, San Matías Gulf, in northern Patagonia. To estimate the incidence of predation, articulated specimens of Darina solenoides (N = 432) were randomly collected in the intertidal zone. Drill holes (N = 94) were recorded in shell lengths ranging between 10 and 35 mm. Taking into account previous studies in the region, the intensity of mortality by drilling (22%) constitutes a higher value than expected for this latitude. These results may help explain local patterns in a particular site in northern Patagonia which has been previously identified as an outlier, but further studies aimed at evaluating macrogeographic patterns are necessary for a better understanding of the regional factors that might be governing these predator–prey interactions.


2016 ◽  
Vol 24 (4) ◽  
pp. 393-402 ◽  
Author(s):  
Scott A. Flemming ◽  
Anna Calvert ◽  
Erica Nol ◽  
Paul A. Smith

Arctic-breeding geese are at record high population levels and are causing significant changes to some of their breeding and staging habitats. These changes could influence sympatric wildlife, but the nature and strength of these effects are unknown. Here, we review the interactions between geese and sympatric species and propose future research that could help to fill important knowledge gaps. We suggest that geese may be indirectly affecting other species through changes to nesting habitat, prey availability, and predator–prey interactions. Many ground-nesting Arctic birds prefer vegetated wet tundra habitats that offer concealed nest sites; areas also heavily used by breeding and staging geese. Where goose foraging exceeds the capacity of the plants to regenerate, habitats have shorter graminoids and more exposed substrate, potentially reducing the availability of concealed nest sites for other birds. Studies have documented local reductions in the abundance of these concealed-nesting species, such as shorebirds. Despite the nutrient enrichment contributed by goose feces, habitats heavily altered by geese have also been shown to host a reduced diversity and abundance of some invertebrate groups. In contrast, generalist predators show positive functional and numerical responses to the presence of breeding geese. Therefore, the risk of predation for alternative or incidental prey (e.g., lemmings or small bird nests) is likely elevated within or near breeding colonies. Studies have demonstrated a reduced abundance of small mammals in areas heavily used by geese, but it is unknown whether this is related to shared predators or habitat alteration. Sympatric wildlife could be further affected through higher stress-levels, altered body condition, or other physiological effects, but there is currently no evidence to demonstrate such impacts. Few studies have explored the potential effects of geese at larger spatial scales, but we suggest that hyperabundant geese could result in regional declines in the abundance and diversity of shorebirds and passerines. We recommend coordinated studies across multiple regions to quantify nesting habitat, arthropod communities, and predator–prey interactions in response to nearby goose colonies. To align with current multispecies approaches to conservation, adequate knowledge of the potential effects of hyperabundant goose populations on other wildlife should be a priority.


Sign in / Sign up

Export Citation Format

Share Document