Comparative Respiration of an Air-Breathing and a Non-Air-Breathing Characoid Fish and the Evolution of Aerial Respiration in Characins

1978 ◽  
Vol 51 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Jeffrey B. Graham ◽  
Donald L. Kramer ◽  
Elpidio Pineda
1980 ◽  
Vol 58 (11) ◽  
pp. 1984-1991 ◽  
Author(s):  
Donald L. Kramer ◽  
Martha McClure

Corydoras aeneus uses the posterior intestine for aerial respiration. Ventilation takes place in a rapid dash to the surface. Air is inspired during the 0.06–0.07 s that the mouth is exposed; expiration occurs via the anus as the fish begins to dive. Air breathing occurs at all dissolved oxygen partial pressures [Formula: see text] from 0 Torr (1 Torr = 133.322 Pa) to at least 140 Torr, but frequency, ranging from 1–45 breaths∙h−1, is negatively correlated with [Formula: see text]. Corydoras aeneus survive at least 9 days without air breathing under normoxic conditions [Formula: see text] but below 15 Torr, only fish able to reach the surface survive. Air-breathing rates are significantly influenced by variations in depth between 10–120 cm but the pattern of response depends on [Formula: see text] and involves changes in activity.


1969 ◽  
Vol 51 (2) ◽  
pp. 407-430 ◽  
Author(s):  
B. R. MCMAHON

1. The anatomy of the head and branchial region of Protopterus has been studied by dissection and section techniques to show the relation between skeletal and muscular elements. X-ray cinematographic, pressure and electromyographic techniques have been used to show how the muscular and skeletal systems interact to produce the respiratory movements. The mechanisms involved in aquatic and aerial respiration in Protopterus have thus been elucidated. 2. The mechanisms of branchial irrigation has been shown to be basically similar to that seen in teleost and elasmobranch fishes, and also similar to that seen in larval amphibia. 3. The aerial cycle is composed of a series of aquatic-type cycles, each of which is modified slightly to serve a specific function in the aerial cycle. Inspiration occurs by a buccal force-pump mechanism. Expiration occurs by the release of compressed pulmonary gas, aided by the elasticity of the lung wall. 4. In this animal the air-breathing mechanism is derived from the aquatic mechanism. The modifications are relatively simple and produce an efficient ventilation mechanism. 5. No movements of the ribs can be seen associated with the respiratory cycles. It is suggested that the aspiratory ventilation mechanisms were not present in the prototetrapods and were not evolved until a later, more fully terrestrial stage was reached. 6. The evidence suggests that the air-breathing mechanism of the tetrapods was powered by a buccal force-pump mechanism which evolved directly from the aquatic system. The evolution of a new mechanism for lung ventilation in the prototetrapods is considered unnecessary.


1987 ◽  
Vol 65 (2) ◽  
pp. 348-353 ◽  
Author(s):  
David J. Bevan ◽  
Donald L. Kramer

Clarias macrocephalus are continuous, facultative air breathers. Individuals (7.6–20.9 g) survived more than 25 days in normoxic water without surface access. Buoyancy decreased and water-breathing frequency increased when surface access was denied, but growth rate and the frequency of air-breathing attempts did not change. We examined air-breathing and water-breathing frequency in shallow (60 cm) and deep (235 cm) water under normoxic (8.0 mg O2∙L−1) and hypoxic (0.3, 0.7, 1.2, and 2.0 mg O2∙L−1) conditions to examine how changes in the travel costs of breathing affected the use of each respiratory mode. Air-breathing and water-breathing frequency increased as dissolved oxygen decreased from 8.0 to 2.0 mg O2∙L−1. Below this level air breathing continued to increase, but water breathing dropped sharply. At higher levels of dissolved oxygen (8.0 and 2.0 mg O2∙L−1), fish in deep water had lower air-breathing and higher water-breathing frequencies than fish in shallow water. Vertical distance travelled and time spent in air breathing increased with increasing depth and with decreasing level of dissolved oxygen. These results support the hypotheses that travel is a significant cost of aerial respiration and that fish respond to increases in this cost by decreasing their use of atmospheric oxygen when dissolved oxygen concentration permits them to do so.


1984 ◽  
Vol 110 (1) ◽  
pp. 91-98 ◽  
Author(s):  
M. E. Feder ◽  
D. B. Seale ◽  
M. E. Boraas ◽  
R. J. Wassersug ◽  
A. G. Gibbs

Air-breathing tadpoles of Xenopus laevis (Amphibia: Anura) use buccopharyngeal surfaces for both gas exchange and capture of food particles in the water. In dense food suspensions, tadpoles decrease ventilation of the buccopharynx and increase air breathing. The lung ventilatory frequency is elevated even though the rate of oxygen consumption is at or below resting levels, suggesting that the lung hyperventilation reflects compensation for decreased buccopharyngeal respiration rather than an increased metabolic requirement. If tadpoles in hypoxic water are prevented from breathing air, they increase buccopharyngeal respiration at the expense of feeding. Aerial respiration evidently permits the buccopharyngeal surfaces to be used primarily for food entrapment.


1983 ◽  
Vol 105 (1) ◽  
pp. 317-338 ◽  
Author(s):  
IAN A. JOHNSTON ◽  
LYNNE M. BERNARD ◽  
GEOFFREY M. MALOIY

Specimens of the African air-breathing catfish Clarias mossambicus were acclimated to either aerated (PwO2 15.3 KPa) or hypoxic (PwO2 2.4KPa) water for up to 27 days at 20 °C. Routine respiration rate for fish acclimated to aerated water was 85.7 mlO2 (kgbodyweight)−1 h−1. Gas exchange across the suprabranchial chambers accounted for 25% of the total. In aerated water the interval between air-breaths varied from 1.4 to 30.6 min. On acute exposure to hypoxia air-breathing frequency was unaltered (6.3 h−1) although aerial respiration rate increased by 70%. This suggests that ventilation of the suprabranchial chambers is variable and that air-breathing frequency is a poor measure of air-breathing effort. Total respiration decreased by 46% on acute exposure to hypoxia (PwO2 2.4 KPa), reflecting a reduction in routine activity. Following acclimation to hypoxia, airbreathing frequency (8.1 h−1) was higher and total routine respiration rate increased from 46.3 to 67.8 mlO2 kg−1h−1. The increased oxygen consumption with hypoxia acclimation was largely the result of an increase in aquatic respiration from 10.4 to 27.5 mlO2kg−1h−1 Measurements were made of mitochondrial volume densities [Vv(mt,f)] and capillary supply to fast and slow myotomal muscles. The fraction of fibre volume occupied by mitochondria was 15 percnt; for slow and 2.5% for fast muscles. Values for [Vv(mt,f)] obtained for fish slow fibres are much higher than for homologous muscles in birds and mammals and show a good correlation with capillary density [NA(c,f)]. Hypoxia acclimation did not result in changes in either muscle Vv(mt,f) or NA(c,f). It is suggested that increased ventilation of the suprabranchial chambers and greater oxygen extraction across the gills obviates the need for modifications in these parameters.


1980 ◽  
Vol 58 (5) ◽  
pp. 819-827 ◽  
Author(s):  
John H. Gee

The central mudminnow. Umbra limi, is a continuous facultative air breather whose respiration is primarily aquatic in normoxic water and primarily aerial in hypoxic water. Under these conditions the frequency of respiration (air breaths; branchial breaths) by the primary mode increases with temperature. In hypoxic water, fish exposed to simulated predator disturbance breathed air in synchrony where a breath by one fish was immediately followed by breaths from one or more other fish. Undisturbed fish breathed air at random times with respect to other individuals. The level of dissolved O2 at which fish switch from primarily aquatic to primarily aerial respiration during progressive hypoxia was positively related to temperature. When fish were exposed to progressive hypoxia in groups (n = 10) the transition to air breathing in terms of dissolved O2 concentration was unaffected by acclimation to hypoxia and by simulated predator disturbance. When held alone (isolated) and disturbed, fish became very active and switched to aerial respiration at a higher level of dissolved O2 than either fish held alone and undisturbed or fish held in a group of 10. During progressive hypoxia without access to air, mudminnows maintained both a high level or activity and frequency of branchial breathing down to 15 Torr (1 Torr = 133.322 Pa). Acclimation to hypoxia did not greatly increase resistance to hypoxia in fish without access to air.


2019 ◽  
Author(s):  
Jay F. Storz ◽  
Chandrasekhar Natarajan ◽  
Magnus K. Grouleff ◽  
Michael Vandewege ◽  
Federico G. Hoffmann ◽  
...  

ABSTRACTAmong the numerous lineages of teleost fish that have independently transitioned from obligate water-breathing to facultative air-breathing, evolved properties of hemoglobin (Hb)-O2 transport may have been shaped by the prevalence and severity of aquatic hypoxia (which influences the extent to which fish are compelled to switch to aerial respiration) as well as the anatomical design of air-breathing structures and the cardiovascular system. Here we examine the structure and function of Hbs in an amphibious, facultative air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris). We also characterized the genomic organization of the globin gene clusters of the species and we integrated phylogenetic and comparative genomic analyses to unravel the duplicative history of the genes that encode the subunits of structurally distinct mudskipper Hb isoforms (isoHbs). The B. pectinirostris isoHbs exhibit high intrinsic O2-affinities, similar to those of hypoxia-tolerant, water-breathing teleosts, and remarkably large Bohr effects. Genomic analysis of conserved synteny revealed that the genes that encode the α-type subunits of the two main adult isoHbs are members of paralogous gene clusters that represent products of the teleost-specific whole-genome duplication. Experiments revealed no appreciable difference in the oxygenation properties of co-expressed isoHbs in spite of extensive amino acid divergence between the alternative α-chain subunit isoforms. It therefore appears that the ability to switch between aquatic and aerial respiration does not necessarily require a division of labor between functionally distinct isoHbs with specialized oxygenation properties.Summary statementThe blue-spotted mudskipper routinely switches between aquatic and aerial respiration. This respiratory versatility is associated with properties of hemoglobin-oxygen transport that are similar to those found in hypoxia-adapted water-breathing fishes.


2010 ◽  
Vol 6 (4) ◽  
pp. 509-512 ◽  
Author(s):  
Alice M. Clement ◽  
John A. Long

Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al . 2010 Nature 463 , 43–48 ( doi:10.1038/nature.08623 )) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times ( ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian ( ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus .


2003 ◽  
Vol 81 (2) ◽  
pp. 272-280 ◽  
Author(s):  
T J MacCormack ◽  
R S McKinley ◽  
R Roubach ◽  
V M.F Almeida-Val ◽  
A L Val ◽  
...  

Amazonian armoured catfishes exhibit substantial cardiac hypoxia tolerance, but little is known concerning organismal cardiorespiratory, metabolic, and behavioural responses to low oxygen levels. This study assessed the general mechanisms used by two species of armoured catfish, Glyptoperichthyes gibbceps and Liposarcus pardalis, to survive the frequent periods of hypoxia encountered in the Amazon River. The gill ventilation rate (fv) and heart rate (fh) were studied under controlled hypoxia in aquaria and under natural hypoxia in a simulated pond. Glyptoperichthyes gibbceps were fitted with radiotelemetry tags and held in field cages to study their habits of depth selection and air breathing. When denied aerial respiration under hypoxia in aquaria, G. gibbceps increased fv, but neither they nor L. pardalis exhibited alterations in fh. An increase in fvwas initially observed in G. gibbceps during pond hypoxia before aerial respiration was initiated and fvdeclined. Glyptoperichthyes gibbceps were hyperglycaemic under normoxia, and extremely large increases in plasma glucose and lactate concentrations were observed under hypoxia. Field studies confirmed their nocturnal behaviour and showed that air breathing increased at night, regardless of dissolved oxygen concentration. Our results show that armoured catfishes preferentially up-regulate fvand anaerobic metabolism and exhibit no bradycardia during hypoxia.


Sign in / Sign up

Export Citation Format

Share Document