scholarly journals THE DUST ATTENUATION CURVE VERSUS STELLAR MASS FOR EMISSION LINE GALAXIES ATz∼ 2

2015 ◽  
Vol 814 (2) ◽  
pp. 162 ◽  
Author(s):  
Gregory R. Zeimann ◽  
Robin Ciardullo ◽  
Caryl Gronwall ◽  
Joanna Bridge ◽  
Hunter Brooks ◽  
...  
2020 ◽  
Vol 493 (3) ◽  
pp. 3966-3984 ◽  
Author(s):  
A A Khostovan ◽  
S Malhotra ◽  
J E Rhoads ◽  
C Jiang ◽  
J Wang ◽  
...  

ABSTRACT We present our measurements of the H α, [O iii], and [O ii] luminosity functions as part of the Lyman Alpha Galaxies at Epoch of Reionization (LAGER) survey using our samples of 1577 z = 0.47 H α-, 3933 z = 0.93 [O iii]-, and 5367 z = 1.59 [O ii]-selected emission line galaxies in a 3 deg2 single, CTIO/Blanco DECam pointing of the COSMOS field. Our observations reach 5σ depths of 8.2 × 10−18 erg s−1 cm−2 and comoving volumes of (1−7) × 105 Mpc3 making our survey one of the deepest narrow-band surveys. We select our emission line galaxies via spectroscopic confirmation, photometric redshifts, and colour–colour selections. We measure the observed luminosity functions for each sample and find best fits of $\phi ^\star = 10^{-3.16^{+0.09}_{-0.09}}$ Mpc−3 and $L^\star = 10^{41.72^{+0.09}_{-0.09}}$ erg s−1 for H α, $\phi ^\star = 10^{-2.16^{+0.10}_{-0.12}}$ Mpc−3 and $L^\star = 10^{41.38^{+0.07}_{-0.06}}$ erg s−1 for [O iii], and $\phi ^\star = 10^{-1.97^{+0.07}_{-0.07}}$ Mpc−3 and $L^\star = 10^{41.66^{+0.03}_{-0.03}}$ erg s−1 for [O ii], with α fixed to −1.75, −1.6, and −1.3, respectively. An excess of bright >1042 erg s−1 [O iii] emitters is observed and may be due to active galactic nucleus (AGN) contamination. Corrections for dust attenuation are applied assuming AHα = 1 mag. We also design our own empirical rest-frame g − r calibration using SDSS DR12 data, test it against our z = 0.47 H α emitters with zCOSMOS 1D spectra, and calibrate it for (g − r) between −0.8 and 1.3 mag. Dust and AGN-corrected star formation rate densities (SFRDs) are measured as log10ρSFR/(M⊙ yr−1 Mpc−3) = −1.63 ± 0.04, −1.07 ± 0.06, and −0.90 ± 0.10 for H α, [O iii], and [O ii], respectively. We find our [O iii] and [O ii] samples fully trace cosmic star formation activity at their respective redshifts in comparison to multiwavelength SFRDs, while the H α sample traces ∼70 per cent of the total z = 0.47 SFRD.


2020 ◽  
Vol 498 (2) ◽  
pp. 1852-1870 ◽  
Author(s):  
V Gonzalez-Perez ◽  
W Cui ◽  
S Contreras ◽  
C M Baugh ◽  
J Comparat ◽  
...  

ABSTRACT Current and future cosmological surveys are targeting star-forming galaxies at z ∼ 1 with nebular emission lines. We use a state-of-the-art semi-analytical model of galaxy formation and evolution to explore the large-scale environment of star-forming emission line galaxies (ELGs). Model ELGs are selected such that they can be compared directly with the DEEP2, VVDS, eBOSS-SGC, and DESI surveys. The large-scale environment of the ELGs is classified using velocity–shear–tensor and tidal–tensor algorithms. Half of the model ELGs live in filaments and about a third in sheets. Model ELGs that reside in knots have the largest satellite fractions. We find that the shape of the mean halo occupation distribution of model ELGs varies widely for different large-scale environments. To interpret our results, we also study fixed number density samples of ELGs and galaxies selected using simpler criteria, with single cuts in stellar mass, star formation rate, and [O ii] luminosity. The fixed number density ELG selection produces samples that are close to L[O ii] and SFR-selected samples for densities above 10−4.2 h3 Mpc−3. ELGs with an extra cut in stellar mass applied to fix their number density, present differences in sheets and knots with respect to the other samples. ELGs, SFR, and L[O ii] selected samples with equal number density have similar large-scale bias but their clustering below separations of 1h−1 Mpc is different.


2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


2010 ◽  
Vol 34 (3) ◽  
pp. 234-244 ◽  
Author(s):  
Gao Feng ◽  
Kong Xu ◽  
Lin Xuan-bin ◽  
Zhang Wei ◽  
Li Jun-rong

2015 ◽  
Vol 578 ◽  
pp. A105 ◽  
Author(s):  
R. Amorín ◽  
E. Pérez-Montero ◽  
T. Contini ◽  
J. M. Vílchez ◽  
M. Bolzonella ◽  
...  

2020 ◽  
Vol 499 (4) ◽  
pp. 5527-5546 ◽  
Author(s):  
Amélie Tamone ◽  
Anand Raichoor ◽  
Cheng Zhao ◽  
Arnaud de Mattia ◽  
Claudio Gorgoni ◽  
...  

ABSTRACT We present the anisotropic clustering of emission-line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173 736 ELGs covering an area of 1170 deg2 over the redshift range 0.6 ≤ z ≤ 1.1. We use the convolution Lagrangian perturbation theory in addition to the Gaussian streaming redshift space distortions to model the Legendre multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation function estimator that cancels out the angular modes from the clustering. At the effective redshift, zeff = 0.85, including statistical and systematical uncertainties, we measure the linear growth rate of structure fσ8(zeff) = 0.35 ± 0.10, the Hubble distance $D_ H(z_{\rm eff})/r_{\rm drag} = 19.1^{+1.9}_{-2.1}$, and the comoving angular diameter distance DM(zeff)/rdrag = 19.9 ± 1.0. These results are in agreement with the Fourier space analysis, leading to consensus values of: fσ8(zeff) = 0.315 ± 0.095, $D_H(z_{\rm eff})/r_{\rm drag} = 19.6^{+2.2}_{-2.1}$, and DM(zeff)/rdrag = 19.5 ± 1.0, consistent with ΛCDM model predictions with Planck parameters.


1987 ◽  
Vol 63 ◽  
pp. 295 ◽  
Author(s):  
Sylvain Veilleux ◽  
Donald E. Osterbrock

1999 ◽  
Vol 137 (2) ◽  
pp. 299-304 ◽  
Author(s):  
S. A. Pustilnik ◽  
D. Engels ◽  
A. V. Ugryumov ◽  
V. A. Lipovetsky ◽  
H.-J. Hagen ◽  
...  

2008 ◽  
Vol 4 (S255) ◽  
pp. 397-401
Author(s):  
David J. Rosario ◽  
Carlos Hoyos ◽  
David Koo ◽  
Andrew Phillips

AbstractWe present a study of remarkably luminous and unique dwarf galaxies at redshifts of 0.5 < z < 0.7, selected from the DEEP2 Galaxy Redshift survey by the presence of the temperature sensitive [OIII]λ4363 emission line. Measurements of this important auroral line, as well as other strong oxygen lines, allow us to estimate the integrated oxygen abundances of these galaxies accurately without being subject to the degeneracy inherent in the standard R23 system used by most studies. [O/H] estimates range between 1/5–1/10 of the solar value. Not surprisingly, these systems are exceedingly rare and hence represent a population that is not typically present in local surveys such as SDSS, or smaller volume deep surveys such as GOODS.Our low-metallicity galaxies exhibit many unprecedented characteristics. With B-band luminosities close to L*, thse dwarfs lie significantly away from the luminosity-metallicity relationships of both local and intermediate redshift star-forming galaxies. Using stellar masses determined from optical and NIR photometry, we show that they also deviate strongly from corresponding mass-metallicity relationships. Their specific star formation rates are high, implying a significant burst of recent star formation. A campaign of high resolution spectroscopic follow-up shows that our galaxies have dynamical properties similar to local HII and compact emission line galaxies, but mass-to-light ratios that are much higher than average star-forming dwarfs.The low metallicities, high specific star formation rates, and small halo masses of our galaxies mark them as lower redshift analogs of Lyman-Break galaxies, which, at z ~ 2 are evolving onto the metallicity sequence that we observe in the galaxy population of today. In this sense, these systems offer fundamental insights into the physical processes and regulatory mechanisms that drive galaxy evolution in that epoch of major star formation and stellar mass assembly.


Sign in / Sign up

Export Citation Format

Share Document