Space and time resolved representation of a vacuum arc light emission

1999 ◽  
Vol 32 (7) ◽  
pp. 785-789
Author(s):  
N Georgescu ◽  
G Sandolache ◽  
V Zoita
Author(s):  
Peter Ouimet ◽  
Jason Goertz ◽  
Olivier Rinaudo ◽  
Lousinda Long ◽  
Simon Yeung

Abstract This paper describes case histories of 0.13 um bulk CMOS technology analyses using Time Resolved Light Emission (TRLEM). Using this technique, scan chain, timing, and logic failures are shown to be quickly and decisively identified thereby meeting the need for rapid feedback on 1st silicon failures and process excursions.


2010 ◽  
Vol 428-429 ◽  
pp. 475-478 ◽  
Author(s):  
Bao Gai Zhai ◽  
Yuan Ming Huang

The optical properties and electronic structures of an organic semiconductor sexithiophene have been investigated with ultraviolet-visible spectroscopy, cw photospectroscopy and time-resolved photospectroscopy, respectively. Sexithiophene in dilute tetrahydrofuran solutions can absorb photons at 400 nm while it can give off strong green photoluminescence at 550 nm under the excitation of 325 nm ultraviolet light. With the assistance of calculated electronic structures and pump-and-probe characterization, our results indicate that both the optical absorption and the light emission of the sexithiophene are controlled by the p-conjugation of the oligothiophene.


Sign in / Sign up

Export Citation Format

Share Document