Surface modification layer deposition on flexible substrates by plasma-enhanced chemical vapour deposition using tetramethylsilane–oxygen gas mixture

2008 ◽  
Vol 41 (22) ◽  
pp. 225305 ◽  
Author(s):  
Cheng-Yang Wu ◽  
Wen-Cheng Chen ◽  
Day-Shan Liu
Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Richard Krumpolec ◽  
Tomáš Homola ◽  
David Cameron ◽  
Josef Humlíček ◽  
Ondřej Caha ◽  
...  

Sequentially pulsed chemical vapour deposition was used to successfully deposit thin nanocrystalline films of copper(I) chloride using an atomic layer deposition system in order to investigate their application to UV optoelectronics. The films were deposited at 125 °C using [Bis(trimethylsilyl)acetylene](hexafluoroacetylacetonato)copper(I) as a Cu precursor and pyridine hydrochloride as a new Cl precursor. The films were analysed by XRD, X-ray photoelectron spectroscopy (XPS), SEM, photoluminescence, and spectroscopic reflectance. Capping layers of aluminium oxide were deposited in situ by ALD (atomic layer deposition) to avoid environmental degradation. The film adopted a polycrystalline zinc blende-structure. The main contaminants were found to be organic materials from the precursor. Photoluminescence showed the characteristic free and bound exciton emissions from CuCl and the characteristic exciton absorption peaks could also be detected by reflectance measurements.


Vacuum ◽  
1999 ◽  
Vol 52 (1-2) ◽  
pp. 169-181 ◽  
Author(s):  
F. Rossi ◽  
C. Schaffnit ◽  
L. Thomas ◽  
H. del Puppo ◽  
R. Hugon

2013 ◽  
Vol 46 ◽  
pp. 79-87 ◽  
Author(s):  
O. Ledain ◽  
W. Woelffel ◽  
J. Roger ◽  
G. Vignoles ◽  
L. Maillé ◽  
...  

2007 ◽  
Vol 989 ◽  
Author(s):  
Hongbo Li ◽  
Ronald H.J. Franken ◽  
Robert L. Stolk ◽  
C. H.M. van der Werf ◽  
Jan-Willem A. Schuttauf ◽  
...  

AbstractThe influence of the surface roughness of Ag/ZnO coated substrates on the AM1.5 J-V characteristics of microcrystalline silicon (μc-Si:H) solar cells with an i-layer made by the hot-wire chemical vapour deposition (HWCVD) technique is discussed. Cells deposited on substrates with an intermediate rms roughness show the highest efficiency. When using reverse hydrogen profiling during i-layer deposition, an efficiency of 8.5 % was reached for single junction μc-Si:H n-i-p cells, which is the highest for μc-Si:H n-i-p cells with a hot-wire i-layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Chii-Ruey Lin ◽  
Da-Hua Wei ◽  
Minh-Khoa BenDao ◽  
Hong-Ming Chang ◽  
Wei-En Chen ◽  
...  

The seedings of the substrate with a suspension of nanodiamond particles (NDPs) were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms) on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.


2008 ◽  
Vol 17 (7-10) ◽  
pp. 1660-1665 ◽  
Author(s):  
S. Rizk ◽  
M.B. Assouar ◽  
C. Gatel ◽  
M. Belmahi ◽  
J. Lambert ◽  
...  

2020 ◽  
Author(s):  
Matthew Griffiths ◽  
Zachary Dubrawski ◽  
Peter Gordon ◽  
Marcel Junige ◽  
Sean Barry

A survey of known gold-containing chemical vapour deposition (CVD) and atomic layer deposition (ALD) precursors, with a focus on collecting their volatilization and decomposition data. These data were applied to a figure of merit (σ) developed to easily assess the thermal characteristics.


Sign in / Sign up

Export Citation Format

Share Document