Two-dimensional wave packets through a one-dimensional quantum barrier

2004 ◽  
Vol 26 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Ph Grossel ◽  
F Depasse
1974 ◽  
Vol 41 (1) ◽  
pp. 101-105 ◽  
Author(s):  
G. A. Hegemier ◽  
T. C. Bache

A continuum theory with microstructure for wave propagation in laminated composites, proposed in previous works concerning propagation normal and parallel to the laminates, is extended herein to the general two-dimensional case. Continuum model construction is based upon an asymptotic scheme in which dominant signal wavelengths are assumed large compared to typical composite microdimensions. A hierarchy of models is defined by the order of truncation of the obtained asymptotic sequence. Particular attention is given to the lowest order dispersive theory. The phase velocity spectrum of the general theory is investigated for one-dimensional wave propagation at various propagation angles with respect to the laminates. Retention of all terms in the asymptotic sequence is found to yield the exact elasticity spectrum, while spectral collation of the lowest order dispersive theory with the first three modes of the exact theory gives excellent agreement.


Author(s):  
Dmytro Baidiuk ◽  
Lassi Paunonen

AbstractIn this paper we present new results on the preservation of polynomial stability of damped wave equations under addition of perturbing terms. We in particular introduce sufficient conditions for the stability of perturbed two-dimensional wave equations on rectangular domains, a one-dimensional weakly damped Webster’s equation, and a wave equation with an acoustic boundary condition. In the case of Webster’s equation, we use our results to compute explicit numerical bounds that guarantee the polynomial stability of the perturbed equation.


1997 ◽  
Vol 65 (6) ◽  
pp. 725-733 ◽  
Author(s):  
D.S. Krähmer ◽  
U. Leonhardt

1993 ◽  
Vol 252 ◽  
pp. 1-30 ◽  
Author(s):  
Igor V. Savenkov

The development of disturbances (two-dimensional non-linear and three-dimensional linear) in the entrance region of a circular pipe is studied in the limit of Reynolds number R → ∞ in the framework of triple-deck theory. It is found that lower-branch axisymmetric disturbances can interact in the resonant manner. Numerical calculations show that a two-dimensional nonlinear wave packet grows much more rapidly than that in the boundary layer on a flat plate, producing a spike-like solution which seems to become singular at a finite time. Large-sized, short-scaled disturbances are also studied. In this case the development of axisymmetric disturbances is governed by single one-dimensional equation in the form of the Korteweg-de Vries and Benjamin-Ono equations in the long- and short-wave limits respectively. The nonlinear interactions of these disturbances lead to the formation of solitons which can run both upstream and downstream. Linear three-dimensional wave packets are also calculated.


2002 ◽  
Vol 456 ◽  
pp. 85-111 ◽  
Author(s):  
WERNER KOCH

To examine possible links between a global instability and laminar–turbulent breakdown in a three-dimensional boundary layer, the spatio-temporal stability of primary and secondary crossflow vortices has been investigated for the DLR swept-plate experiment. In the absence of any available procedure for the direct verification of pinching for three-dimensional wave packets the alternative saddle-point continuation method has been applied. This procedure is known to give reliable results only in a certain vicinity of the most unstable ray. Therefore, finding no absolute instability by this method does not prove that the flow is absolutely stable. Accordingly, our results obtained this way need to be confirmed experimentally or by numerical simulations. A geometric interpretation of the time-asymptotic saddle-point result explains certain convergence and continuation problems encountered in the numerical wave packet analysis. Similar to previous results, all our three-dimensional wave packets for primary crossflow vortices were found to be convectively unstable.Due to prohibitive CPU time requirements the existing procedure for the verification of pinching for two-dimensional wave packets of secondary high-frequency instabilities could not be implemented. Again saddle-point continuation was used. Surprisingly, all two-dimensional wave packets of high-frequency secondary instabilities investigated were also found to be convectively unstable. This finding was corroborated by recent spatial direct numerical simulations of Wassermann & Kloker (2001) for a similar problem. This suggests that laminar–turbulent breakdown occurs after the high-frequency secondary instabilities enter the nonlinear stage, and spatial marching techniques, such as the parabolized stability equation method, should be applicable for the computation of these nonlinear states.


1991 ◽  
Vol 226 ◽  
pp. 573-590 ◽  
Author(s):  
Feng Jiang

This paper examines the three-dimensional wave packets which are generated by an initially localized pulse disturbance in an incompressible parallel flow and described by a double Fourier integral in the wavenumber space. It aims to clear up some confusion arising from the asymptotic evaluation of this integral by the method of steepest descent. In this asymptotic analysis, the calculation of the eigenvalues can be facilitated by making use of the Squire transformation. It is demonstrated that the use of the Squire transformation introduces branch points in the saddle-point equation that links the physical coordinates to the saddle-point value, regardless of whether the flow is viscous or inviscid. It is shown that the correct branch should be chosen according to the principle of analytic continuation. The saddle-point values for the three-dimensional problem should be considered to be the analytic continuation of those for the two-dimensional case where the saddle-point values can be uniquely determined. The three-dimensional wave packets in an inviscid wake flow are examined; their behaviour at large time is calculated asymptotically by the method of steepest descent in terms of the two-dimensional eigenvalue relation.


2021 ◽  
Vol 2 (3) ◽  
pp. 19-21
Author(s):  
M. G. A. Hayder Chowdhury ◽  
N. Akhtar

In this paper, we have tried to approach the concepts of two-dimensional wave equation and one dimensional heat equation through the means of the Navier Stoke’s equation for unsteady and incompressible flow. Our pursuit to do so has been supported with ample justifications and analytic discussions. The strong relation shared by the fluid dynamics, wave mechanics and heat flow has been brought to light through our attempts.


1994 ◽  
Vol 272 ◽  
pp. 255-284 ◽  
Author(s):  
K. B. Winters ◽  
E. A. D’Asaro

The behaviour of internal gravity wave packets approaching a critical level is investigated through numerical simulation. Initial-value problems are formulated for both small- and large-amplitude wave packets. Wave propagation and the early stages of interaction with the mean shear are two-dimensional and result in the trapping of wave energy near a critical level. The subsequent dynamics of wave instability, however, are fundamentally different for two- and three-dimensional calculations. Three-dimensionality develops by transverse convective instability of the two-dimensional wave. The initialy two-dimensional flow eventually collapses into quasi-horizontal vortical structures. A detailed energy balance is presented. Of the initial wave energy, roughly one third reflects, one third results in mean flow acceleration and the remainder cascades to small scales where it is dissipated. The detailed budget depends on the wave amplitude, the amount of wave reflection being particularly sensitive.


2019 ◽  
Vol 76 (9) ◽  
pp. 2715-2738 ◽  
Author(s):  
Junhong Wei ◽  
Gergely Bölöni ◽  
Ulrich Achatz

AbstractThis paper compares two different approaches for the efficient modeling of subgrid-scale inertia–gravity waves in a rotating compressible atmosphere. The first approach, denoted as the pseudomomentum scheme, exploits the fact that in a Lagrangian-mean reference frame the response of a large-scale flow can only be due to forcing momentum. Present-day gravity wave parameterizations follow this route. They do so, however, in an Eulerian-mean formulation. Transformation to that reference frame leads, under certain assumptions, to pseudomomentum-flux convergence by which the momentum is to be forced. It can be shown that this approach is justified if the large-scale flow is in geostrophic and hydrostatic balance. Otherwise, elastic and thermal effects might be lost. In the second approach, called the direct scheme and not relying on such assumptions, the large-scale flow is forced both in the momentum equation, by anelastic momentum-flux convergence and an additional elastic term, and in the entropy equation, via entropy-flux convergence. A budget analysis based on one-dimensional wave packets suggests that the comparison between the abovementioned two schemes should be sensitive to the following two parameters: 1) the intrinsic frequency and 2) the wave packet scale. The smaller the intrinsic frequency is, the greater their differences are. More importantly, with high-resolution wave-resolving simulations as a reference, this study shows conclusive evidence that the direct scheme is more reliable than the pseudomomentum scheme, regardless of whether one-dimensional or two-dimensional wave packets are considered. In addition, sensitivity experiments are performed to further investigate the relative importance of each term in the direct scheme, as well as the wave–mean flow interactions during the wave propagation.


Sign in / Sign up

Export Citation Format

Share Document