Influence of Growth Parameters of Frequency-Radio Plasma Nitrogen Source on Extending Emission Wavelengths from 1.31 μm to 1.55 μm GaInNAs/GaAs Quantum Wells Grown by Molecular-Beam Epitaxy

2006 ◽  
Vol 23 (4) ◽  
pp. 1005-1008
Author(s):  
Wu Dong-Hai ◽  
Niu Zhi-Chuan ◽  
Zhang Shi-Yong ◽  
Ni Hai-Qiao ◽  
He Zhen-Hong ◽  
...  
2001 ◽  
Vol 693 ◽  
Author(s):  
Patrick Waltereit ◽  
James S. Speck

AbstractWe have studied the structural and optical properties of a series of (In,Ga)/GaN multiple quantum wells with identical thicknesses but varied In content grown by plasma-assisted molecular beam epitaxy. Careful choice of the growth parameters returns samples with smooth and abrupt interfaces. The shift of the photoluminescence transition energy with externally applied biaxial tension was investigated. We observed a red-shift for small In contents while a blue-shift was detected for higher In contents. This result is in qualitative agreement with band profile calculations taking into account both the band gap deformation potentials and the piezoelectric polarization in these structures. However, the magnitude of the shift is well in excess of the calculated one. We attribute this finding to a substantial deviation of the piezoelectric constants from those calculated for unstrained material. Finally, we estimate the piezoelectric polarization of InGaN/GaN for linear and non-linear terms in strain.


1999 ◽  
Vol 595 ◽  
Author(s):  
F. Semendy ◽  
L.K. Li ◽  
M.J. Jurkovic ◽  
W.I. Wang

AbstractSingle quantum well InGaN was grown by molecular beam epitaxy with ammonia as the nitrogen source. The samples were grown on (0001) sapphire substrates. The photoluminescence (PL) intensity of InGaN quantum wells showed band-edge emissions at 2.71eV at low temperature (10 K). PL was investigated as a function of excitation intensity and temperature. The relationship between PL intensity and excitation intensity, as well as the relationship between PL intensity and lattice temperature was studied. Also studied was the combined effect of temperature and intensity variation. Detailed results are reported here.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 308 ◽  
Author(s):  
ChengDa Tsai ◽  
Ikai Lo ◽  
YingChieh Wang ◽  
ChenChi Yang ◽  
HongYi Yang ◽  
...  

Indium-incorporation with InxGa1-xN layers on GaN-microdisks has been systematically studied against growth parameters by plasma-assisted molecular beam epitaxy. The indium content (x) of InxGa1-xN layer increased to 44.2% with an In/(In + Ga) flux ratio of up to 0.6 for a growth temperature of 620 °C, and quickly dropped with a flux ratio of 0.8. At a fixed In/(In + Ga) flux ratio of 0.6, we found that the indium content decreased as the growth temperature increased from 600 °C to 720 °C and dropped to zero at 780 °C. By adjusting the growth parameters, we demonstrated an appropriate InxGa1-xN layer as a buffer to grow high-indium-content InxGa1-xN/GaN microdisk quantum wells for micro-LED applications.


1991 ◽  
Vol 69 (11) ◽  
pp. 7942-7944 ◽  
Author(s):  
K. T. Shiralagi ◽  
R. A. Puechner ◽  
K. Y. Choi ◽  
R. Droopad ◽  
G. N. Maracas

1991 ◽  
Vol 241 ◽  
Author(s):  
Y. Hwang ◽  
D. Zhang ◽  
T. Zhang ◽  
M. Mytych ◽  
R. M. Kolbas

ABSTRACTIn this work we demonstrate that photopumped quantum wellheterostructure lasers with excellent optical quality can be grown ontop of a LT GaAs buffer layer by molecular beam epitaxy. Hightemperature thermal annealing of these lasers blue-shifts the laseremission wavelengths but the presence/absence of a LT GaAs layerhad little effect on the overall laser thresholds. Also, to first order itwas not necessary to include an AlAs barrier layer to preventadverse effects (as has been necessary in the gate stack of MESFETs to prevent carrier compensation).


1991 ◽  
Vol 30 (Part 2, No. 10A) ◽  
pp. L1726-L1728 ◽  
Author(s):  
Yoshinobu Sekiguchi ◽  
Sei-ichi Miyazawa ◽  
Natsuhiko Mizutani

Sign in / Sign up

Export Citation Format

Share Document