Bright Soliton Solutions in Degenerate Femi Gas near Feshbach Resonance

2009 ◽  
Vol 26 (12) ◽  
pp. 120308 ◽  
Author(s):  
Liu Hong ◽  
He Dai-Hai ◽  
Lou Sen-Yue ◽  
He Xian-Tu
2021 ◽  
pp. 2150484
Author(s):  
Asif Yokuş

In this study, the auxiliary equation method is applied successfully to the Lonngren wave equation. Bright soliton, bright–dark soliton solutions are produced, which play an important role in the distribution and distribution of electric charge. In the conclusion and discussion section, the effect of nonlinearity term on wave behavior in bright soliton traveling wave solution is examined. The advantages and disadvantages of the method are discussed. While graphs representing the stationary wave are obtained, special values are given to the constants in the solutions. These graphs are presented as 3D, 2D and contour.


2018 ◽  
Vol 32 (06) ◽  
pp. 1850082
Author(s):  
Ding Guo ◽  
Shou-Fu Tian ◽  
Li Zou ◽  
Tian-Tian Zhang

In this paper, we consider the (3[Formula: see text]+[Formula: see text]1)-dimensional modified Korteweg–de Vries–Kadomtsev–Petviashvili (mKdV-KP) equation, which can be used to describe the nonlinear waves in plasma physics and fluid dynamics. By using solitary wave ansatz in the form of sech[Formula: see text] function and a direct integrating way, we construct the exact bright soliton solutions and the travelling wave solutions of the equation, respectively. Moreover, we obtain its power series solutions with the convergence analysis. It is hoped that our results can provide the richer dynamical behavior of the KdV-type and KP-type equations.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 341 ◽  
Author(s):  
Juan Luis García Guirao ◽  
Haci Mehmet Baskonus ◽  
Ajay Kumar

This paper applies the sine-Gordon expansion method to the extended nonlinear (2+1)-dimensional Boussinesq equation. Many new dark, complex and mixed dark-bright soliton solutions of the governing model are derived. Moreover, for better understanding of the results, 2D, 3D and contour graphs under the strain conditions and the suitable values of parameters are also plotted.


2018 ◽  
Vol 22 ◽  
pp. 01056 ◽  
Author(s):  
Seyma Tuluce Demiray ◽  
Hasan Bulut

In this paper, generalized Kudryashov method (GKM) is used to find the exact solutions of (1+1) dimensional nonlinear Ostrovsky equation and (4+1) dimensional Fokas equation. Firstly, we get dark and bright soliton solutions of these equations using GKM. Then, we remark the results we found using this method.


Author(s):  
S. Saha Ray ◽  
Shailendra Singh

The governing equations for fluid flows, i.e. Kadomtsev–Petviashvili–Benjamin–Bona–Mahony (KP-BBM) model equations represent a water wave model. These model equations describe the bidirectional propagating water wave surface. In this paper, an auto-Bäcklund transformation is being generated by utilizing truncated Painlevé expansion method for the considered equation. This paper determines the new bright soliton solutions for [Formula: see text] and [Formula: see text]-dimensional nonlinear KP-BBM equations. The simplified version of Hirota’s technique is utilized to infer new bright soliton solutions. The results are plotted graphically to understand the physical behavior of solutions.


2014 ◽  
Vol 19 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Ahmet Bekir ◽  
Adem C. Cevikel ◽  
Ozkan Guner ◽  
Sait San

In this paper, we obtained the 1-soliton solutions of the (2+1)-dimensional Boussinesq equation and the Camassa–Holm–KP equation. By using a solitary wave ansatz in the form of sechp function, we obtain exact bright soliton solutions and another wave ansatz in the form of tanhp function we obtain exact dark soliton solutions for these equations. The physical parameters in the soliton solutions are obtained nonlinear equations with constant coefficients.


2013 ◽  
Vol 75 (1-2) ◽  
pp. 201-207 ◽  
Author(s):  
Hua-Jie Jiang ◽  
Jia-Jie Xiang ◽  
Chao-Qing Dai ◽  
Yue-Yue Wang

Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 17 ◽  
Author(s):  
Juan Luis García Guirao ◽  
H. M. Baskonus ◽  
Ajay Kumar ◽  
M. S. Rawat ◽  
Gulnur Yel

This paper presents many new complex combined dark-bright soliton solutions obtained with the help of the accurate sine-Gordon expansion method to the B-type Kadomtsev-Petviashvili-Boussinesq equation with binary power order nonlinearity. With the use of some computational programs, we plot many new surfaces of the results obtained in this paper. In addition, we present the interactions between complex travelling wave patterns and their solitons.


Sign in / Sign up

Export Citation Format

Share Document