Numerical Investigation of the Slow Acoustic Wave Modes in a One-Dimensional Phononic Crystal Plate

2013 ◽  
Vol 30 (8) ◽  
pp. 086301 ◽  
Author(s):  
Xu Zhang ◽  
Zhi-Wu An
Author(s):  
Chittaranjan Nayak ◽  
Mehdi Solaimani ◽  
Alireza Aghajamali ◽  
Arafa H. Aly

In this study, we have scrutinized the frequency gap generation by changing the geometrical parameters of a one-dimensional phononic crystal. For this purpose, we have calculated the transmission coefficient of an incident acoustic wave by using the transfer matrix method. We have retained and fixed the total length of the system and changed the system internal geometry not to increase the system length too much. Another reason was to adjust the phononic band gaps and get the desired transmission properties by finding the optimum internal geometry without increasing or decreasing the total length of phononic crystals. In addition, we also propose few structures with the opportunity of applications in acoustical devices such as sonic reflectors. Our results can also be of high interest to design acoustic filters in the case that transmission of certain frequencies is necessary.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1485
Author(s):  
Fei Ge ◽  
Liye Zhao ◽  
Yang Zhang

Surface acoustic wave gyroscopes (SAWGs), as a kind of all-solid-state micro-electro-mechanical system (MEMS) gyroscopes, can work normally under extremely high-impact environmental conditions. Among the current SAWGs, amplitude-modulated gyroscopes (AMGs) are all based on the same gyro effect, which was proved weak, and their sensitivity and intensity of the output are both lower than frequency-modulated gyroscopes (FMGs). However, because FMGs need to process a series of frequency signals, their signal processing and circuits are far less straightforward and simple than AMGs. In order to own both high-sensitivity and simple signal processing, a novel surface acoustic traveling wave gyroscope based on amplitude modulation is proposed, using one-dimensional phononic crystals (PCs) in this paper. In view of its specific structure, the proposed gyroscope consists of a surface acoustic wave oscillator and a surface acoustic wave delay line within a one-dimensional phononic crystal with a high-Q defect mode. In this paper, the working principle is analyzed theoretically through the partial wave method (PWM), and the gyroscopes with different numbers of PCs are also designed and studied by using the finite element method (FEM) and multiphysics simulation. The research results demonstrate that under a 1 V oscillator voltage output, the higher sensitivity of −23.1 mV·(rad/s)−1 in the linear range from −8 rad/s to 8 rad/s is reached when the gyro with three PC walls, and the wider linear range from −15 rad/s to 17.5 rad/s with the sensitivity of −6.7 mV·(rad/s)−1 with only one PC wall. Compared with the existing AMGs using metal dots to enhance the gyro effect, the sensitivity of the proposed gyro is increased by 15 to 112 times, and the linear range is increased by 4.6 to 186 times, even without the enhancement of the metal dots.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1130
Author(s):  
Jiacheng Liu ◽  
Temesgen Bailie Workie ◽  
Ting Wu ◽  
Zhaohui Wu ◽  
Keyuan Gong ◽  
...  

Thin-film piezoelectric-on-silicon (TPoS) microelectromechanical (MEMS) resonators are required to have high Q-factor to offer satisfactory results in their application areas, such as oscillator, filter, and sensors. This paper proposed a phononic crystal (PnC)-reflector composite structure to improve the Q factor of TPoS resonators. A one-dimensional phononic crystal is designed and deployed on the tether aiming to suppress the acoustic leakage loss as the acoustic wave with frequency in the range of the PnC is not able to propagate through it, and a reflector is fixed on the anchoring boundaries to reflect the acoustic wave that lefts from the effect of the PnC. Several 10 MHz TPoS resonators are fabricated and tested from which the Q-factor of the proposed 10 MHz TPoS resonator which has PnC-reflector composite structure on the tether and anchoring boundaries achieved offers a loaded Q-factor of 4682 which is about a threefold improvement compared to that of the conventional resonator which is about 1570.


Wave Motion ◽  
2015 ◽  
Vol 54 ◽  
pp. 66-75 ◽  
Author(s):  
Yi-Fan Zhu ◽  
Ying Yuan ◽  
Xin-Ye Zou ◽  
Jian-Chun Cheng

2011 ◽  
Vol 406 (11) ◽  
pp. 2249-2253 ◽  
Author(s):  
Yuanwei Yao ◽  
Zhilin Hou ◽  
Fugen Wu ◽  
Xin Zhang

Sign in / Sign up

Export Citation Format

Share Document