Cosmological models arising from generalized scalar field potentials

1999 ◽  
Vol 16 (11) ◽  
pp. 3749-3763 ◽  
Author(s):  
Luis P Chimento ◽  
Vicenç Méndez ◽  
Norberto Zuccalá
1999 ◽  
Vol 08 (06) ◽  
pp. 739-750 ◽  
Author(s):  
A. V. TOPORENSKY

The dynamics of closed scalar field FRW cosmological models is studied for several types of exponentially and more than exponentially steep potentials. The parameters of scalar field potentials which allow a chaotic behavior are found from numerical investigations. It is argued that analytical studies of equation of motion at the Euclidean boundary can provide an important information about the properties of chaotic dynamics. Several types of transition from chaotic to regular dynamics are described.


2012 ◽  
Vol 44 (9) ◽  
pp. 2205-2214 ◽  
Author(s):  
Alexander Y. Kamenshchik ◽  
Serena Manti

2019 ◽  
Vol 97 (8) ◽  
pp. 880-894
Author(s):  
M. Zubair ◽  
Farzana Kousar ◽  
Saira Waheed

In this paper, we explore the nature of scalar field potential in [Formula: see text] gravity using a well-motivated reconstruction scheme for flat Friedmann–Robertson–Walker (FRW) geometry. The beauty of this scheme lies in the assumption that the Hubble parameter can be expressed in terms of scalar field and vice versa. Firstly, we develop field equations in this gravity and present some general explicit forms of scalar field potential via this technique. In the first case, we take the de Sitter universe model and construct some field potentials by taking different cases for the coupling function. In the second case, we derive some field potentials using the power law model in the presence of different matter sources like barotropic fluid, cosmological constant, and Chaplygin gas for some coupling functions. From graphical analysis, it is concluded that using some specific values of the involved parameters, the reconstructed scalar field potentials are cosmologically viable in both cases.


2020 ◽  
Vol 2020 (08) ◽  
pp. 021-021 ◽  
Author(s):  
S. Mohandas ◽  
R.J. van den Hoogen ◽  
D. Winters ◽  
M. Dala

2017 ◽  
Vol 26 (02) ◽  
pp. 1750012 ◽  
Author(s):  
B. Pourhassan ◽  
J. Naji

In this paper, we consider tachyonic matter in spatially flat Friedmann–Robertson–Walker (FRW) universe, and obtain behavior of some important cosmological parameters for two special cases of potentials. First, we assume the exponential potential and then consider hyperbolic cosine type potential. In both cases, we obtain behavior of the Hubble, deceleration and EoS parameters. Comparison with observational data suggest the model with hyperbolic cosine type scalar field potentials has good model to describe universe.


1995 ◽  
Vol 51 (12) ◽  
pp. 6757-6763 ◽  
Author(s):  
Paul Parsons ◽  
John D. Barrow

2007 ◽  
Vol 16 (10) ◽  
pp. 1683-1704 ◽  
Author(s):  
FRANCESCO CANNATA ◽  
ALEXANDER Y. KAMENSHCHIK

We discuss the phenomenon of the smooth dynamical gravity induced crossing of the phantom divide line in a framework of simple cosmological models where it appears to occur rather naturally, provided the potential of the unique scalar field has some kind of cusp. The behavior of cosmological trajectories in the vicinity of the cusp is studied in some detail and a simple mechanical analogy is presented. The phenomenon of certain complementarity between the smoothness of the space–time geometry and matter equations of motion is elucidated. We introduce a network of cosmological histories and qualitatively describe some of its properties.


Sign in / Sign up

Export Citation Format

Share Document