Generalised non-equilibrium equation of state for nuclear matter with momentum-dependent interactions

1987 ◽  
Vol 13 (9) ◽  
pp. L181-L188 ◽  
Author(s):  
L W Neise ◽  
H Stocker ◽  
W Greiner
Author(s):  
A.T. D’yachenko ◽  
I.A. Mitropolsky

The non-equilibrium equation of state is found in the approximation of the functional on the local density, and its application to the description of the emission of protons and pions in heavy ion collisions is considered. The non-equilibrium equation of state is studied in the context of the hydrodynamic approach. The compression stage, the expansion stage, and the freeze-out stage of the hot spot formed during the collisions of heavy ions are considered. The energy spectra of protons and subthreshold pions produced in collisions of heavy ions are calculated with inclusion of the nuclear viscosity effects and compared with experimental data for various combinations of colliding nuclei with energies of several tens of MeV per nucleon.


2019 ◽  
Vol 204 ◽  
pp. 03018
Author(s):  
Alexander T. D’yachenko ◽  
Ivan A. Mitropolsky

A hydrodynamic approach with a non-equilibrium equation of state is used to describe the collisions of heavy ions at medium and intermediate energies. In the development of this approach, with the inclusion of nuclear viscosity effects and the introduction of an amendment to the microcanonical distribution, the double differential cross sections of proton emission in collisions of different nuclei are calculated, which are in agreement with the available experimental data on the emission of high-energy particles, including the cumulative spectral region.


1990 ◽  
Vol 05 (14) ◽  
pp. 1071-1080 ◽  
Author(s):  
S. W. HUANG ◽  
M. Z. FU ◽  
S. S. WU ◽  
S. D. YANG

The equation of state of the asymmetric nuclear matter is calculated with the Gogny D1 effective density-dependent nucleon-nucleon interaction and the Coulomb interaction in the framework of the finite-temperature HF method with the rearrangement term. The dependence of the thermodynamical properties such as the critical temperature of the liquid-gas phase transition, the chemical potential, the compression modulus and the entropy on the Coulomb interaction in nuclear matter is treated by using a shielded two-body Coulomb potential and this method has been found to be a reasonable and effective approach.


2020 ◽  
Vol 1667 ◽  
pp. 012001
Author(s):  
Nicolas Baillot d’Étivaux ◽  
Jérôme Margueron ◽  
Sebastien Guillot ◽  
Natalie Webb ◽  
Màrcio Catelan ◽  
...  

2004 ◽  
Vol 69 (6) ◽  
Author(s):  
W. Zuo ◽  
Z. H. Li ◽  
A. Li ◽  
G. C. Lu

Sign in / Sign up

Export Citation Format

Share Document