A High-Temperature, Thermal Non-equilibrium Equation of State for Ammonia

2006 ◽  
Vol 27 (3) ◽  
pp. 794-819 ◽  
Author(s):  
D. L. Allison ◽  
P. G. Mikellides
Author(s):  
A.T. D’yachenko ◽  
I.A. Mitropolsky

The non-equilibrium equation of state is found in the approximation of the functional on the local density, and its application to the description of the emission of protons and pions in heavy ion collisions is considered. The non-equilibrium equation of state is studied in the context of the hydrodynamic approach. The compression stage, the expansion stage, and the freeze-out stage of the hot spot formed during the collisions of heavy ions are considered. The energy spectra of protons and subthreshold pions produced in collisions of heavy ions are calculated with inclusion of the nuclear viscosity effects and compared with experimental data for various combinations of colliding nuclei with energies of several tens of MeV per nucleon.


2019 ◽  
Vol 204 ◽  
pp. 03018
Author(s):  
Alexander T. D’yachenko ◽  
Ivan A. Mitropolsky

A hydrodynamic approach with a non-equilibrium equation of state is used to describe the collisions of heavy ions at medium and intermediate energies. In the development of this approach, with the inclusion of nuclear viscosity effects and the introduction of an amendment to the microcanonical distribution, the double differential cross sections of proton emission in collisions of different nuclei are calculated, which are in agreement with the available experimental data on the emission of high-energy particles, including the cumulative spectral region.


2014 ◽  
Vol 228 ◽  
pp. 56-62 ◽  
Author(s):  
Cuiping Yang ◽  
Toru Inoue ◽  
Akihiro Yamada ◽  
Takumi Kikegawa ◽  
Jun-ichi Ando

2021 ◽  
Author(s):  
Scott Bair

Abstract In the classical approach to elastohydrodynamic lubrication (EHL) a single parameter, the pressure-viscosity coefficient, quantifies the isothermal pressure dependence of the viscosity for use in prediction of film thickness. Many definitions are in current use. Progress toward a successful definition of this property has been hampered by the refusal of those working in classical EHL to acknowledge the existence of accurate measurements of the piezoviscous effect that have existed for nearly a century. The Hamrock and Dowson pressure-viscosity coefficient at high temperature requires knowledge of the piezoviscous response at pressures which exceed the inlet pressure and may exceed the Hertz pressure. The definition of pressure-viscosity coefficient and the assumed equation of state must limit the use of the classical formulas, including Hamrock and Dowson, to liquids with high Newtonian limit and to low temperature. Given that this problem has existed for at least fifty years without resolution, it is reasonable to conclude that there is no definition of pressure-viscosity coefficient that will quantify the piezoviscous response for an analytical calculation of EHL film thickness at temperatures above ambient.


Sign in / Sign up

Export Citation Format

Share Document