Corrigendum: System size dependence of nuclear modification and azimuthal anisotropy of jet quenching

2013 ◽  
Vol 40 (4) ◽  
pp. 049502
Author(s):  
Somnath De ◽  
Dinesh K Srivastava
2015 ◽  
Vol 17 (38) ◽  
pp. 25100-25108 ◽  
Author(s):  
Marise Westbroek ◽  
Niels Boon ◽  
René van Roij

Manipulation of the charge of the dielectric interface between two bulk liquids not only enables the adjustment of the interfacial tension, but also controls the storage capacity of ions in the ionic double layers adjacent to each side of the interface.


1997 ◽  
Vol 11 (11) ◽  
pp. 1311-1335 ◽  
Author(s):  
Kristel Michielsen ◽  
Hans De Raedt

We present stochastic diagonalization results for the ground-state energy and the largest eigenvalue of the two-fermion density matrix of the BCS reduced Hamiltonian, the Hubbard model, and the Hubbard model with correlated hopping. The system-size dependence of this eigenvalue is used to study the existence of Off-Diagonal Long-Range Order in these models. We show that the model with correlated hopping and repulsive on-site interaction can exhibit Off-Diagonal Long-Range Order. Analytical results for some special limiting cases indicate that Off-Diagonal Long-Range Order not always implies superconductivity.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Shu-Qing Li ◽  
Wen-Jing Xing ◽  
Xiang-Yu Wu ◽  
Shanshan Cao ◽  
Guang-You Qin

AbstractWe explore the system size dependence of heavy-quark-QGP interaction by studying the heavy flavor meson suppression and elliptic flow in Pb–Pb, Xe–Xe, Ar–Ar and O–O collisions at the LHC. The space-time evolution of the QGP is simulated using a $$(3+1)$$ ( 3 + 1 ) -dimensional viscous hydrodynamic model, while the heavy-quark-QGP interaction is described by an improved Langevin approach that includes both collisional and radiative energy loss inside a thermal medium. Within this framework, we provides a reasonable description of the D meson suppression and flow coefficients in Pb–Pb collisions, as well as predictions for both D and B meson observables in other collision systems yet to be measured. We find a clear hierarchy for the heavy meson suppression with respect to the size of the colliding nuclei, while their elliptic flow coefficient relies on both the system size and the geometric anisotropy of the QGP. Sizable suppression and flow are predicted for both D and B mesons in O–O collisions, which serve as a crucial bridge of jet quenching between large and small collision systems. Scaling behaviors between different collision systems are shown for heavy meson suppression factor and the bulk-eccentricity-rescaled heavy meson elliptic flow as functions of the number of participant nucleons in heavy-ion collisions.


Sign in / Sign up

Export Citation Format

Share Document