Tip-induced excitation of a single vortex in nano-size superconductors using scanning tunneling microscopy

2010 ◽  
Vol 21 (46) ◽  
pp. 465704 ◽  
Author(s):  
Takahiro Nishio ◽  
Shizeng Lin ◽  
Toshu An ◽  
Toyoaki Eguchi ◽  
Yukio Hasegawa
Author(s):  
Yudai Sato ◽  
Masahiro Haze ◽  
Hung Hsiang Yang ◽  
Kanta Asakawa ◽  
Susumu Takahashi ◽  
...  

Abstract We numerically calculated ferromagnetic resonance (FMR) spectra taken on a single-domain nano-size ferromagnetic island structure in the configuration of radio-frequency scanning tunneling microscopy (RF-STM), where RF electromagnetic waves are introduced into the tunneling gap through the probe tip. In this scheme, near-field in-plane azimuthal RF magnetic field induces FMR of an out-of-plane magnetized island situated below the tip under the external out-of-plane magnetic field. The amount of the magnetization of the island is effectively reduced by the resonance and the reduction can be detected from the spin-polarized tunneling conductance. From the calculated spectra we found that the FMR signal becomes larger with a smaller tip-sample distance and a sharper tip. It is also revealed that the azimuthal RF magnetic field and therefore the FMR signal are enhanced when a tip is located near the edge of the island.


Hyomen Kagaku ◽  
2012 ◽  
Vol 33 (8) ◽  
pp. 443-448
Author(s):  
Takaki SAKAMOTO ◽  
Takaaki TOMINAGA ◽  
Takahiro NISHIO ◽  
Toyoaki EGUCHI ◽  
Yasuo YOSHIDA ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Hung-Hsiang Yang ◽  
Chuan-Che Hsu ◽  
Kanta Asakawa ◽  
W. C. Lin ◽  
Yukio Hasegawa

We measured the magnetic hysteresis and coercivity of individual Co and Co0.8Fe0.2 bilayer nano-size island structures formed on Cu(111) substrate using spin-polarized scanning tunneling microscopy. From the hysteresis taken on...


2009 ◽  
Vol 614 ◽  
pp. 21-26
Author(s):  
Kenichi Tanaka ◽  
Xiao Hong Jiang

Scanning tunneling microscopy (STM) proved the existence of quasi-compounds on solid surfaces. A typical example is (-Ag-O-) or (-Cu-O-) chains grown on Ag(110) or Cu(110) surface by exposing to O2. The (-Ag-O-) chains on a Ag(110) reacts with Cu atoms to form a new quasi-compound of (-Cu-O-) chains on the Ag(110) surface. The (-Cu-O-) on the Ag(110) readily decomposes at ca. 570ºK to form Cu6 dots, and a reversible reaction of (Cu2)3 + O2. ↔ (-Cu-O-) takes place by exposing to O2. Deposited Zn, Sn and Ag atoms on a Si(111)-7x7 surface stabilize by forming Zn3, Sn2 and Sn, and Ag in a half unit cell. Layer-by-layer growth of Zn3 clusters occurs in a half unit cell, which results in the growth of a semi-conductive honeycomb layer of Zn3 clusters on the Si(111)-7x7 surface. By prohibiting hopping migration of Ag atoms on the Si(111)-7x7 surface by the adsorption of C2H5OH, nano-size Ag dots grow layer-by-layer in a limited mold spacing. The band gap of Ag-dots becomes narrower and narrower and becomes metallic at higher than 6 layers.


Author(s):  
H.-J. Cantow ◽  
H. Hillebrecht ◽  
S. Magonov ◽  
H. W. Rotter ◽  
G. Thiele

From X-ray analysis, the conclusions are drawn from averaged molecular informations. Thus, limitations are caused when analyzing systems whose symmetry is reduced due to interatomic interactions. In contrast, scanning tunneling microscopy (STM) directly images atomic scale surface electron density distribution, with a resolution up to fractions of Angstrom units. The crucial point is the correlation between the electron density distribution and the localization of individual atoms, which is reasonable in many cases. Thus, the use of STM images for crystal structure determination may be permitted. We tried to apply RuCl3 - a layered material with semiconductive properties - for such STM studies. From the X-ray analysis it has been assumed that α-form of this compound crystallizes in the monoclinic space group C2/m (AICI3 type). The chlorine atoms form an almost undistorted cubic closed package while Ru occupies 2/3 of the octahedral holes in every second layer building up a plane hexagon net (graphite net). Idealizing the arrangement of the chlorines a hexagonal symmetry would be expected. X-ray structure determination of isotypic compounds e.g. IrBr3 leads only to averaged positions of the metal atoms as there exist extended stacking faults of the metal layers.


Author(s):  
I. H. Musselman ◽  
R.-T. Chen ◽  
P. E. Russell

Scanning tunneling microscopy (STM) has been used to characterize the surface roughness of nonlinear optical (NLO) polymers. A review of STM of polymer surfaces is included in this volume. The NLO polymers are instrumental in the development of electrooptical waveguide devices, the most fundamental of which is the modulator. The most common modulator design is the Mach Zehnder interferometer, in which the input light is split into two legs and then recombined into a common output within the two dimensional waveguide. A π phase retardation, resulting in total light extinction at the output of the interferometer, can be achieved by changing the refractive index of one leg with respect to the other using the electrooptic effect. For best device performance, it is essential that the NLO polymer exhibit minimal surface roughness in order to reduce light scattering. Scanning tunneling microscopy, with its high lateral and vertical resolution, is capable of quantifying the NLO polymer surface roughness induced by processing. Results are presented below in which STM was used to measure the surface roughness of films produced by spin-coating NLO-active polymers onto silicon substrates.


Author(s):  
D. R. Denley

Scanning tunneling microscopy (STM) has recently been introduced as a promising tool for analyzing surface atomic structure. We have used STM for its extremely high resolution (especially the direction normal to surfaces) and its ability for imaging in ambient atmosphere. We have examined surfaces of metals, semiconductors, and molecules deposited on these materials to achieve atomic resolution in favorable cases.When the high resolution capability is coupled with digital data acquisition, it is simple to get quantitative information on surface texture. This is illustrated for the measurement of surface roughness of evaporated gold films as a function of deposition temperature and annealing time in Figure 1. These results show a clear trend for which the roughness, as well as the experimental deviance of the roughness is found to be minimal for evaporation at 300°C. It is also possible to contrast different measures of roughness.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Author(s):  
Mircea Fotino ◽  
D.C. Parks

In the last few years scanning tunneling microscopy (STM) has made it possible and easily accessible to visualize surfaces of conducting specimens at the atomic scale. Such performance allows the detailed characterization of surface morphology in an increasing spectrum of applications in a wide variety of fields. Because the basic imaging process in STM differs fundamentally from its equivalent in other well-established microscopies, good understanding of the imaging mechanism in STM enables one to grasp the correct information content in STM images. It thus appears appropriate to explore by STM the structure of amorphous carbon films because they are used in many applications, in particular in the investigation of delicate biological specimens that may be altered through the preparation procedures.All STM images in the present study were obtained with the commercial instrument Nanoscope II (Digital Instruments, Inc., Santa Barbara, California). Since the importance of the scanning tip for image optimization and artifact reduction cannot be sufficiently emphasized, as stressed by early analyses of STM image formation, great attention has been directed toward adopting the most satisfactory tip geometry. The tips used here consisted either of mechanically sheared Pt/Ir wire (90:10, 0.010" diameter) or of etched W wire (0.030" diameter). The latter were eventually preferred after a two-step procedure for etching in NaOH was found to produce routinely tips with one or more short whiskers that are essentially rigid, uniform and sharp (Fig. 1) . Under these circumstances, atomic-resolution images of cleaved highly-ordered pyro-lytic graphite (HOPG) were reproducibly and readily attained as a standard criterion for easily recognizable and satisfactory performance (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document