The alternative strategy for designing covalent drugs through kinetic effects of pi-stacking on the self-assembled nanoparticles: a model study with antibiotics

2016 ◽  
Vol 27 (44) ◽  
pp. 445101 ◽  
Author(s):  
Libo Du ◽  
Siqingaowa Suo ◽  
Han Zhang ◽  
Hongying Jia ◽  
Ke Jian Liu ◽  
...  
MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


2017 ◽  
Vol 41 (20) ◽  
pp. 11955-11961 ◽  
Author(s):  
Haoyuan Wang ◽  
Xia Kong ◽  
Shuai Zhao ◽  
Junshi Wu ◽  
Xiyou Li ◽  
...  

High-sensitive, quick-response room-temperature sensor to NO2 and NH3 is developed, based on QLS film of a new amphiphilic tris(phthalocyaninato) europium.


2015 ◽  
Vol 3 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Sheng Zhu ◽  
Hui Zhang ◽  
Ping Chen ◽  
Lin-Hui Nie ◽  
Chuan-Hao Li ◽  
...  

A facile protocol for the self-assembly of the rGO/β-MnO2 hybrid hydrogel with ultrafine structure and precise control of mass-loading for high performance supercapacitors is reported.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39685-39685
Author(s):  
Vivekanandan Raman ◽  
Dinah Punnoose ◽  
Pari Baraneedharan ◽  
Sunkara Srinivasa Rao ◽  
Chandu V. V. M. Gopi ◽  
...  

Correction for ‘Study on the efficient PV/TE characteristics of the self-assembled thin films based on bismuth telluride/cadmium telluride’ by Vivekanandan Raman et al., RSC Adv., 2017, 7, 6735–6742.


Author(s):  
F. Bagarello ◽  
F. Gargano ◽  
S. Spagnolo ◽  
S. Triolo

In this paper, we undertake an analysis of the eigenstates of two non-self-adjoint operators q ^ and p ^ similar, in a suitable sense, to the self-adjoint position and momentum operators q ^ 0 and p ^ 0 usually adopted in ordinary quantum mechanics. In particular, we discuss conditions for these eigenstates to be biorthogonal distributions , and we discuss a few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non-self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with q ^ and p ^ , based on the so-called quasi *-algebras .


2008 ◽  
Vol 516 (18) ◽  
pp. 6476-6482 ◽  
Author(s):  
Xiaoquan Lu ◽  
Huiqing Yuan ◽  
Guofang Zuo ◽  
Jiandong Yang

Sign in / Sign up

Export Citation Format

Share Document