Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

2014 ◽  
Vol 23 (9) ◽  
pp. 095033 ◽  
Author(s):  
F Weber
Author(s):  
Masashi Yasuda ◽  
Rongrong Gu ◽  
Osamu Nishihara ◽  
Hiroshi Matsuhisa ◽  
Kunio Ukai ◽  
...  

2017 ◽  
Vol 28 (16) ◽  
pp. 2275-2285 ◽  
Author(s):  
Christopher R Kelley ◽  
Jeffrey L Kauffman

Piezoelectric-based semi-active vibration reduction techniques typically rely on rapid changes in the electrical boundary conditions or corresponding stiffness state. Approaches such as state switching and synchronized switch damping on a resistor or an inductor require four switching events per vibration cycle, with switch timing associated with displacement extrema. Any deviation from this switch timing affects the performance of these techniques. Typical harmonic forcing analyses focus on the energy dissipation and only evaluate the performance at resonance. This study evaluates displacement reduction for harmonic excitation, both at resonance and for frequencies near resonance. Furthermore, it examines the effect of sub-optimal switch timings. Numerical simulations of a non-dimensional model are performed, and an analytical solution is derived for any switch time. This analysis shows that the optimal switch timing depends on the forcing frequency relative to the natural frequency of the structure. Thus, the classical switch time at peak displacement is only optimal when the excitation is exactly at resonance. Even when the optimal switch timing is known, uncertainties in vibration sensing cannot guarantee that switches will occur at the desired moment. Therefore, this work characterizes the degradation in vibration reduction performance when switching away from the optimal switch time based on global, non-dimensional parameters.


2018 ◽  
Vol 196 ◽  
pp. 01017
Author(s):  
Anatolij Konovalov ◽  
Marina Pustovalova

Suspended structures that are used extensively in construction of motorway and pedestrian bridges allow bridging wide spans without having to install intermediate supports. Being less stiff in comparison to girder and arch bridges, suspension bridges require their dynamic properties to be controlled [1, 2]. This is a vital task when it comes to suspension bridges. Several engineering arrangements are available to control the dynamic properties of the structures [3]. This paper addresses the use of active dampers [4] installed on the tops of the towers as the means to control vibrations of a suspension bridge. To this end, a planar 3D model of suspension bridge was built using ANSYS software. The authors compared stress-strain behavior and dynamic properties of the models with and without active vibration dampers. In contrast to the initial model, the model of a bridge equipped with active dampers exhibits less displacement in all cross-sections. Thus, the displacements are reduced 1.7 times in the middle of the central span of suspended stiffening truss; 2.7 times in the middle of the end span; and displacements of the top of the bridge tower are 1.6 times less. The modal analysis has shown that in the model with active dampers the frequency of transverse vibrations at the tower tops has increased 1.9 times, while vertical vibrations have increased within 23%. Under maximum applied overpressure in the active damper, torsional vibrations of the structure have increased 2.4 times as compared to the initial model. The results obtained by the authors allow for the conclusion that active dampers are useful tools for controlling the dynamic properties of a suspension bridge.


2000 ◽  
Author(s):  
Nader Jalili

Abstract A semi-active vibration absorber with adaptive capability is presented to improve wide band vibration suppression characteristics of harmonically excited structures. The absorber subsection consists of a double-ended cantilever beam carrying an intermediate lumped mass. The adaptive capability is achieved through concurrent adjustment of the position of the moving mass, along the beam, to comply with the desired optimal performance. If such an absorber is attached to a vibrating body, it effectively absorbs vibrations at all frequencies that belong to the absorber frequency bandwidth. Numerical simulations are provided to verify the effectiveness of the proposed absorption scheme. It is shown that the tuning strategy tries to follow and match the absorber natural frequency with the excitation frequency. The optimally tuned absorber provides considerable vibration suppression improvement over the passive and de-tuned absorbers, for wide band excitation disturbances.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shyh-Chin Huang ◽  
Kao-An Lin

The authors designed a novel type of dynamic vibration absorber, called periodic vibration absorber (PVA), for mechanical systems subjected to periodic excitation. Since the periodic rather than single harmonic excitation is themost occurring case in mechanical systems, the design of PVA is hence of engineering significance. The PVA designed in this paper is composed of a dual-beam interconnected with a discrete spring in between. By appropriately choosing the design parameters, the PVA can be of resonance frequencies in integer multiples of the base frequency such that the PVA can absorb significant amount of higher harmonics in addition to the base harmonic. The designed PVA was first experimentally verified for its resonance frequencies. The PVA implemented onto a mechanical system was then tested for its absorption ability. From both tests, satisfying agreement between experiments and numerical calculations has been obtained. The sensitivities of the design variables, such as the discrete spring’s stiffness and location, were discussed as well. The parameters’ sensitivities provided us with the PVA’s adjustable room for excitation frequency’s mismatch. Numerical results showed that within 3% of frequency mismatch, the PVA still performed better than a single DVA via adjusting the spring’s constant and location. All the results proved that the novel type of PVA could be a very effective device for vibration reduction of mechanical systems subjected to periodic excitation.


2007 ◽  
Vol 300 (1-2) ◽  
pp. 250-264 ◽  
Author(s):  
Shang-Teh Wu ◽  
Jiann-Yeu Chen ◽  
Yuan-Chih Yeh ◽  
Yea-Ying Chiu

Sign in / Sign up

Export Citation Format

Share Document