scholarly journals Transverse-momentum-dependent gluon distributions and semi-inclusive processes at hadron colliders

2005 ◽  
Vol 2005 (07) ◽  
pp. 020-020 ◽  
Author(s):  
Xiangdong Ji ◽  
Jian-Ping Ma ◽  
Feng Yuan
2018 ◽  
Vol 175 ◽  
pp. 01015
Author(s):  
Phiala Shanahan

I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon’s momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Daniël Boer ◽  
Umberto D’Alesio ◽  
Francesco Murgia ◽  
Cristian Pisano ◽  
Pieter Taels

Abstract We consider the transverse momentum spectrum and the cos 2ϕ azimuthal distribution of J/ψ mesons produced in semi-inclusive, deep-inelastic electron-proton scattering, where the electron and the proton are unpolarized. At low transverse momentum, we propose factorized expressions in terms of transverse momentum dependent gluon distributions and shape functions. We show that our formulae, at the order αs, correctly match with the collinear factorization results at high transverse momentum. The latter are computed at the order $$ {\alpha}_s^2 $$ α s 2 in the framework of nonrelativistic QCD (NRQCD), with the inclusion of the intermediate $$ {}^3{S}_1^{\left[1\right]} $$ 3 S 1 1 color-singlet Fock state, as well as the subleading color-octet ones that are relatively suppressed by a factor v4 in the NRQCD velocity parameter v. We show that the $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 and $$ {}^3{P}_J^{\left[8\right]} $$ 3 P J 8 (J = 0, 1, 2) contributions diverge in the small transverse momentum region and allow us to determine the perturbative tails of the shape functions, which carry the same quantum numbers. These turn out to be identical, except for the overall magnitude given by the appropriate NRQCD long distance matrix element.


2015 ◽  
Vol 37 ◽  
pp. 1560031
Author(s):  
Cristian Pisano

Linearly polarized gluons inside an unpolarized proton contribute to the transverse momentum distributions of (pseudo)scalar particles produced in hadronic collisions, such as Higgs bosons and quarkonia with even charge conjugation (ηc, ηb, χc0, χb0). Moreover, they can produce azimuthal asymmetries in the associated production of a photon and a J/ψ or a Υ particle, in a kinematic configuration in which they are almost back to back. These observables, which can be measured in the running experiments at the LHC, could lead to a first extraction of both the polarized and the unpolarized gluon distributions and allow for a study of their process and energy scale dependences.


2011 ◽  
Vol 04 ◽  
pp. 200-215
Author(s):  
A. V. RADYUSHKIN

Inclusion of transverse momentum effects into the description of the pion-photon transition form factor is discussed. At low k⊥, a consistent description may be obtained within the light-front formalism. On the other hand, the large-k⊥ limit is most conveniently treated within the Sudakov parameterization framework. The third way of introducing k⊥ is based on the "local duality" approach motivated by QCD sum rules. It is shown that, while the local duality gives a correct (coinciding with the axial anomaly based prediction) result for the real photon point, a straightforward extension of the formulas of the modified factorization approach into the small virtualities domain produces a divergent result. It is pointed out that such lessons should be taken into account while constructing transverse-momentum-dependent schemes for inclusive processes.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Daniel Gutierrez-Reyes ◽  
Sergio Leal-Gomez ◽  
Ignazio Scimemi

AbstractAt hadron colliders, the differential cross section for W production can be factorized and it is sensitive transverse momentum dependent distributions (TMD) for low boson transverse momentum. While, often, the corresponding non-perturbative QCD contributions are extrapolated from Z boson production, here we use an existing extraction (based on the code Artemide) of TMD which includes data coming from Drell–Yan and semi-inclusive deep inelastic scattering, to provide checks and predictions for the W case. Including fiducial cuts with different configurations and kinematical power corrections, we consider transverse momentum dependent cross sections within several intervals of the vector boson transverse mass. We perform the same study for the $$p_T^{W^-}/p_T^{W^+}$$ p T W - / p T W + and $$p_T^Z/p_T^W$$ p T Z / p T W distributions. We compare our predictions with recent extractions of these quantities at ATLAS and CMS and results from TeVatron. The results encourage a broader experimental and phenomenological work, and a deeper study of TMD for the W case.


2018 ◽  
Vol 27 (05) ◽  
pp. 1830003 ◽  
Author(s):  
Elena Petreska

In this paper, we review recent progress in the description of unpolarized transverse-momentum-dependent (TMD) gluon distributions at small [Formula: see text] in the color glass condensate (CGC) effective theory. We discuss the origin of the nonuniversality of TMD gluon distributions in the TMD factorization framework and in the CGC theory and the equivalence of the two approaches in their overlapping domain of validity. We show some applications of this equivalence, including recent results on the behavior of TMD gluon distributions at small [Formula: see text], and on the study of gluon saturation. We discuss recent advances in the unification of the TMD evolution and the nonlinear small-[Formula: see text] evolution of gluon distributions.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Alessandro Bacchetta ◽  
Francesco Giovanni Celiberto ◽  
Marco Radici ◽  
Pieter Taels

Abstract We present a model calculation of transverse-momentum-dependent distributions (TMDs) of gluons in the nucleon. The model is based on the assumption that a nucleon can emit a gluon, and what remains after the emission is treated as a single spectator particle. This spectator particle is considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function. The nucleon-gluon-spectator coupling is described by an effective vertex containing two form factors. We fix the model parameters to obtain the best agreement with collinear gluon distributions extracted from global fits. We study the tomography in momentum space of gluons inside nucleons for various combinations of their polarizations. These can be used to make predictions of observables relevant for gluon TMD studies at current and future collider facilities.


Sign in / Sign up

Export Citation Format

Share Document