A Novel Piezoelectric RF-MEMS Resonator with Enhanced Quality Factor

Author(s):  
JINCHAO LI ◽  
Zeji Chen ◽  
Wenli Liu ◽  
Jinling Yang ◽  
Yinfang Zhu ◽  
...  

Abstract This work presents a novel ultra-high frequency (UHF) Lamb mode Aluminum Nitride (AlN) piezoelectric resonator with enhanced quality factors (Q). With slots introduced in the vicinity of the tether support end, the elastic waves leaking from the tether sidewalls can be reflected, which effectively reduces the anchor loss while retaining size compactness and mechanical robustness. Comprehensive analysis was carried out to provide helpful guidance for obtaining optimal slot designs. For various resonators with frequencies ranging from 630 MHz to 1.97 GHz, promising Q enhancements up to 2 times have all been achieved. The 1.97 GHz resonator implemented excellent f × Q product up to 6.72 × 1012 and low motional resistance down to 340 Ω, which is one of the highest performances among the reported devices. The devices with enhanced Q values as well as compact size could have potential application in advanced RF front end transceivers.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Insu Yeom ◽  
Junghan Choi ◽  
Sung-su Kwoun ◽  
Byungje Lee ◽  
Changwon Jung

The RF front-end performances in the far-field condition of reconfigurable antennas employing two commonly used RF switching devices (PIN diodes and RF-MEMS switches) were compared. Two types of antennas (monopole and slot) representing general direct/coupled feed types were used for the reconfigurable antennas to compare the excited RF power to the RF switches by the reconfigurable antenna types. For the switching operation of the antennas, a biasing circuit was designed and embedded in the same antenna board, which included a battery to emphasize the antenna’s adaptability to mobile devices. The measurement results of each reconfigurable antenna (radiation patterns and return losses) are presented in this study. The receiving power of the reference antenna was measured by varying the transmitting power of the reconfigurable antennas in the far-field condition. The receiving power was analyzed using the “Friis transmission equation” and compared for two switching elements. Based on the results of these measurements and comparisons, we discuss what constitutes an appropriate switch device and antenna type for reconfigurable antennas of mobile devices in the far-field condition.


Author(s):  
Zeji Chen ◽  
Wenli Liu ◽  
Quan Yuan ◽  
Yinfang Zhu ◽  
Jinling Yang ◽  
...  

Author(s):  
R. Malmqvist ◽  
A. Gustafsson ◽  
T. Nilsson ◽  
C. Samuelsson ◽  
B. Carlegrim ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1627
Author(s):  
Joel A. Castillo ◽  
Jorge Flores-Troncoso ◽  
Rigoberto Jáuregui ◽  
Jorge Simón ◽  
José L. Alvarez-Flores

This work presents the design, performance evaluation, manufacture, and characterization of an RF front-end signal conditioning chain on a substrate that achieves the best performance at S-band frequencies and complies with the dimensions of the international standard for CubeSat-type nanosatellites. In this development, the signal conditioning chains were carried out on the high-frequency substrates RO4350B, CuClad 250, and RT/duroid 5880, considering scattering parameters in a small-signal regime. Concerning the power output, after the filtering and amplifying stages, the conditioning chain delivered 2 watts at 2.25 GHz. Moreover, up to 40 dB gain was achieved, and a good impedance matching at −20 dB for both input and output ports was observed. The numerical simulations and experimental results showed that an RO4350B substrate allows the smallest design dimensions, and these comply with the dimensions of the CubeSat standard. The manufactured RF front-end signal conditioning chain on RO4350B requires an area of 95 mm2, and it is ready to be used in a proof-of-concept space mission in a CubeSat.


Author(s):  
R. Malmqvist ◽  
A. Gustafsson ◽  
T. Nilsson ◽  
C. Samuelsson ◽  
B. Carlegrim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document