The role of associative ionization reactions in the memory effect of atmospheric pressure Townsend discharges in N2 with a small O2 addition

2020 ◽  
Vol 53 (20) ◽  
pp. 205201 ◽  
Author(s):  
Xi Lin ◽  
Clémence Tyl ◽  
Nicolas Naudé ◽  
Nicolas Gherardi ◽  
Nikolay A Popov ◽  
...  
Plasma ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 12-26
Author(s):  
Ezequiel Cejas ◽  
Beatriz Mancinelli ◽  
Leandro Prevosto

A model of a stationary glow-type discharge in atmospheric-pressure air operated in high-gas-temperature regimes (1000 K < Tg < 6000 K), with a focus on the role of associative ionization reactions involving N(2D,2P)-excited atoms, is developed. Thermal dissociation of vibrationally excited nitrogen molecules, as well as electronic excitation from all the vibrational levels of the nitrogen molecules, is also accounted for. The calculations show that the near-threshold associative ionization reaction, N(2D) + O(3P) → NO+ + e, is the major ionization mechanism in air at 2500 K < Tg < 4500 K while the ionization of NO molecules by electron impact is the dominant mechanism at lower gas temperatures and the high-threshold associative ionization reaction involving ground-state atoms dominates at higher temperatures. The exoergic associative ionization reaction, N(2P) + O(3P) → NO+ + e, also speeds up the ionization at the highest temperature values. The vibrational excitation of the gas significantly accelerates the production of N2(A3∑u+) molecules, which in turn increases the densities of excited N(2D,2P) atoms. Because the electron energy required for the excitation of the N2(A3∑u+) state from N2(X1∑g+, v) molecules (e.g., 6.2 eV for v = 0) is considerably lower than the ionization energy (9.27 eV) of the NO molecules, the reduced electric field begins to noticeably fall at Tg > 2500 K. The calculated plasma parameters agree with the available experimental data.


Author(s):  
L.D. Schmidt ◽  
K. R. Krause ◽  
J. M. Schwartz ◽  
X. Chu

The evolution of microstructures of 10- to 100-Å diameter particles of Rh and Pt on SiO2 and Al2O3 following treatment in reducing, oxidizing, and reacting conditions have been characterized by TEM. We are able to transfer particles repeatedly between microscope and a reactor furnace so that the structural evolution of single particles can be examined following treatments in gases at atmospheric pressure. We are especially interested in the role of Ce additives on noble metals such as Pt and Rh. These systems are crucial in the automotive catalytic converter, and rare earths can significantly modify catalytic properties in many reactions. In particular, we are concerned with the oxidation state of Ce and its role in formation of mixed oxides with metals or with the support. For this we employ EELS in TEM, a technique uniquely suited to detect chemical shifts with ∼30Å resolution.


2014 ◽  
Vol 57 (3) ◽  
Author(s):  
Paolo Madonia ◽  
Paolo Romano ◽  
Salvatore Inguaggiato

<p>Investigations on correlation drops between near-ground atmospheric pressures measured at sea level and at higher altitudes on Italian volcanoes have been carried out. We looked for perturbations of the atmospheric pressure field driven by volcanic activity, but not excluding possible external triggers for the observed anomalies. Decorrelations between atmospheric pressures measured at Stromboli Island in stations located at different altitudes (years 2002-10) have been analysed and compared with data from other volcanic (Vesuvius) and non volcanic (Mt. Soro) orographic structures. We investigated as their possible triggers volcanic, meteorological and space weather parameters, with particular attention to Total Solar Irradiance (TSI), Kp index and Forbush decreases. Pressure decorrelations seems to be driven by astronomic cycles, with maxima in summer and minima in winter. A further contribution was found, seemingly assignable to TSI anomalies, with correlation minima occurring 12 hours after these but only during phases of high Sun activity. Moreover, during the same phases a main periodicity of about 27 days in pressure decorrelations was revealed by FFT analysis. This period is the same of the Sun Carrington rotation, expressing the periodic reappearance of sunspot groups on Sun’s surface. The strong similarity between recurrences of sunspot number and atmospheric pressure anomalies further supports the role of the former as a possible trigger for the latter.</p>


2018 ◽  
Vol 16 (36) ◽  
pp. 134-139
Author(s):  
Ahmed Mahmoud Shihab

In this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.


2020 ◽  
Author(s):  
Mustafa Yasin Aslan ◽  
Justin Hargreaves ◽  
Deniz Uner

In this study, the process economics of ammonia synthesis over Co3Mo3N was investigated by searching an optimum feed stoichiometry. By ammonia synthesis rate measurements at atmospheric pressure and 400 oC...


1984 ◽  
Vol 30 (105) ◽  
pp. 180-187 ◽  
Author(s):  
Roger Leb. Hooke

AbstractRecent theoretical studies of glacier hydrology have assumed that subglacial conduits are completely filled with water under steady-state conditions. This, however, is not necessarily the case. Where discharges are larger than a few tens of liters per second and the down-glacier slope of the bed is more than a few degrees, the potential energy released by water descending this slope may be capable of melting the walls of a subglacial conduit many times faster than the conduit can close by plastic flow of the ice. As a result, the pressure in such tunnels may normally be atmospheric, or possibly even at the triple-point pressure if there is no open connection to the glacier surface. Simple calculations suggest that such pressures in subglacial conduits may be more common than heretofore anticipated.The positions of such “open” conduits may be unstable to small perturbations in discharge or ice velocity. This is because the mechanical energy available in excess of that needed to balance closure can instead offset the general flow of the ice. Conduits can thus trend diagonally across the direction of ice flow. If an increase in the angle which such a conduit makes with the ice flow direction also results in an increase in slope of the conduit, more mechanical energy will become available, resulting in a positive feedback process.Subglacial channels at atmospheric pressure may influence the origin and morphology of certain glacial landforms, such as eskers and “plastically-molded” features.


2020 ◽  
Vol 53 (29) ◽  
pp. 295201
Author(s):  
Friederike Kogelheide ◽  
Farina Voigt ◽  
Bastian Hillebrand ◽  
Ralf Moeller ◽  
Felix Fuchs ◽  
...  

2016 ◽  
Vol 9 (11) ◽  
pp. 5591-5606 ◽  
Author(s):  
Eleonora Aruffo ◽  
Fabio Biancofiore ◽  
Piero Di Carlo ◽  
Marcella Busilacchio ◽  
Marco Verdecchia ◽  
...  

Abstract. Total peroxy nitrate ( ∑ PN) concentrations have been measured using a thermal dissociation laser-induced fluorescence (TD-LIF) instrument during the BORTAS campaign, which focused on the impact of boreal biomass burning (BB) emissions on air quality in the Northern Hemisphere. The strong correlation observed between the  ∑ PN concentrations and those of carbon monoxide (CO), a well-known pyrogenic tracer, suggests the possible use of the  ∑ PN concentrations as marker of the BB plumes. Two methods for the identification of BB plumes have been applied: (1)  ∑ PN concentrations higher than 6 times the standard deviation above the background and (2)  ∑ PN concentrations higher than the 99th percentile of the  ∑ PNs measured during a background flight (B625); then we compared the percentage of BB plume selected using these methods with the percentage evaluated, applying the approaches usually used in literature. Moreover, adding the pressure threshold ( ∼  750 hPa) as ancillary parameter to  ∑ PNs, hydrogen cyanide (HCN) and CO, the BB plume identification is improved. A recurrent artificial neural network (ANN) model was adapted to simulate the concentrations of  ∑ PNs and HCN, including nitrogen oxide (NO), acetonitrile (CH3CN), CO, ozone (O3) and atmospheric pressure as input parameters, to verify the specific role of these input data to better identify BB plumes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2150
Author(s):  
Maryam A. Saeed ◽  
Ian A. Kinloch ◽  
Brian Derby

The chemical vapor deposition (CVD) of graphene on liquid substrates produces high quality graphene films due to the defect-free and atomically flat surfaces of the liquids. Through the detailed study of graphene growth on liquid Sn using atmospheric pressure CVD (APCVD), the quality of graphene has been found to have a close relationship with hydrogen flow rate that reflects on hydrogen partial pressure inside the reactor (PH2) and hydrogen solubility of the growth substrates. The role of PH2 was found to be crucial, with a low defect density monolayer graphene being obtained in low PH2 (90.4 mbar), while partial graphene coverage occurred at high PH2 (137.3 mbar). To further understand the role of substrate’s composition, binary alloy with compositions of 20, 30, 50, 60 and 80 wt.% tin in copper were made by arc-melting. Graphene quality was found to decrease with increasing the content of copper in the Cu–Sn alloys when grown using the conditions optimised for Sn substrates and this was related to the change in hydrogen solubility and the high catalytic activity of Cu compared to Sn. This shall provide a tool to help optimising CVD conditions for graphene growth based on the properties of the used catalytic substrate.


Sign in / Sign up

Export Citation Format

Share Document