Electrokinetic energy conversion through cylindrical microannulus with periodic heterogeneous wall potentials

Author(s):  
Xin Chu ◽  
Yongjun Jian

Abstract In microfluidic electrokinetic flows, heterogeneous wall potentials are often required to fulfill some functions, such as increasing dispersion and mixing efficiency. In this paper, we study the pressure-driven electrokinetic flow through microannulus with heterogeneous wall potentials in circumferential direction. The streaming potential induced by the ions accumulating in downstream of the microannulus is considered and the electrokinetic energy conversion efficiency is further investigated. Interestingly, based on the method of Fourier expansion, the analytical solutions of fluid velocity, streaming potential and energy conversion efficiency are derived for arbitrary peripheral distribution of the small wall potential for the first time. Four specific patterned modes of the heterogeneous wall potential, i.e., constant, step, sinusoid with period 2π and sinusoid with period π/2 are represented. The distributions of the electric potential and the velocity for four different modes are depicted graphically. Furthermore, the variations of the streaming potential and the electrokinetic energy conversion efficiency with related parameters are also discussed. Results show that when these integral values from -π to π associated with the wall potentials are identical, the streaming potential and the electrokinetic energy conversion efficiency corresponding to different modes are the same. Additionally, the amplitude of fluid velocity peripherally reduces with the increase of the wavenumber of wall potential distribution in θ-direction.

2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


2008 ◽  
Vol 78 (4) ◽  
Author(s):  
Y. Nodera ◽  
S. Kawata ◽  
N. Onuma ◽  
J. Limpouch ◽  
O. Klimo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document