Investigation of Ni catalyst activation during plasma-assisted methane oxidation

Author(s):  
Yudong Li ◽  
Michael Hinshelwood ◽  
Gottlieb S Oehrlein

Abstract Atmospheric pressure plasma has shown promise in improving thermally activated catalytic reactions through a process termed plasma-catalysis synergy. In this work, we investigated atmospheric pressure plasma jet (APPJ)-assisted CH4 oxidation over a Ni/SiO2.Al2O3 catalyst. Downstream gas-phase products from CH4 conversion were quantified by Fourier transform infrared spectroscopy (FTIR). The catalyst near-surface region was characterized by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The catalyst was observed to be activated at elevated temperature (500 °C) if it was exposed to the APPJ operated at large plasma power. “Catalyst activation” signifies that the purely thermal conversion of CH4 using catalysts which had been pre-exposed to plasma became more intense and produced consistently CO product, even if the plasma was extinguished. Without the application of the APPJ to the Ni catalyst surface this was not observed at 500 °C. The study of different exposure conditions of the activated catalyst indicates that the reduction of the catalyst by the APPJ is likely the cause of the catalyst activation. We also observed a systematic shift of the vibrational frequency of adsorbed CO on Ni catalyst when plasma operating conditions and catalyst temperatures were varied and discussed possible explanations for the observed changes. This work provides insights into the plasma-catalyst interaction, especially catalyst modification in the plasma catalysis process, and potentially demonstrates the possibility of utilizing the surface CO as a local probe to understand the plasma-catalyst interaction and shed light on the complexity of plasma catalysis.

2012 ◽  
Vol 37 (4) ◽  
pp. 566 ◽  
Author(s):  
Christoph Gerhard ◽  
Daniel Tasche ◽  
Stephan Brückner ◽  
Stephan Wieneke ◽  
Wolfgang Viöl

2013 ◽  
Vol 33 (5) ◽  
pp. 895-905 ◽  
Author(s):  
Christoph Gerhard ◽  
Tobias Weihs ◽  
Daniel Tasche ◽  
Stephan Brückner ◽  
Stephan Wieneke ◽  
...  

2017 ◽  
Vol 50 (15) ◽  
pp. 154005 ◽  
Author(s):  
Jungmi Hong ◽  
Sergey Pancheshnyi ◽  
Eugene Tam ◽  
John J Lowke ◽  
Steven Prawer ◽  
...  

PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2018 ◽  
Vol 677 (1) ◽  
pp. 135-142
Author(s):  
Dong Ha Kim ◽  
Choon-Sang Park ◽  
Eun Young Jung ◽  
Bhum Jae Shin ◽  
Jae Young Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document